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Abstract

In this paper, we investigate the tight bound of the
stretch factor of the Delaunay triangulation by studying
the stretch factor of the chain (Xia 2011). We define a
sequence Γ = (Γ1,Γ2,Γ3, . . .) where Γi is the maximum
stretch factor of a chain of i circles, and show that Γ is
strictly increasing. We then present an improved lower
bound of 1.5932 for the stretch factors of the Delaunay
triangulation. This bound is derived from a sequence of
chains sharing a set of properties. We conjecture that
these properties are also shared by a chain with the
worst stretch factor.

1 Introduction

Let S be a finite set of points in the Euclidean plane. A
Delaunay triangulation of S is a triangulation in which
the circumscribed circle of every triangle contains no
point of S in its interior. An alternative equivalent def-
inition is: An edge xy is in the Delaunay triangulation
of S if and only if there exists a circle through points x
and y whose interior is devoid of points of S. A Delau-
nay triangulation of S is the dual graph of the Voronoi
diagram of S.

Let D be a Delaunay triangulation of S. For two
points p and q in S, denote by d(p, q) the length of
the shortest path from p to q following the edges of the
triangles in D and by ||pq|| the Euclidean line distance
between p and q. Then the stretch factor (also known as
dilation or spanning ratio) of a Delaunay triangulation
of S is the maximum value of d(p, q)/||pq|| over all pairs
of points p, q in S.

Proving the tight bound for the stretch factor of De-
launay triangulations has been a long standing open
problem in computational geometry, with important
applications in areas such as wireless communications.
The stretch factor of Delaunay triangulations has an
obvious lower bound of π/2 ≈ 1.571 [3], which occurs
when the points lie on a circle whose diameter is pq.
Recently, Bose et. al. [2] gave an improved lower bound
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of 1.581 > π/2 by constructing a configuration where
the points are distributed on the boundary of two half
circles separated by a small distance. They also showed
a slightly better lower bound of 1.5846. In term of up-
per bounds, Dobkin, Friedman, and Supowit [5] in 1987
showed that the stretch factor of the Delaunay trian-
gulation is at most (1 +

√
5)π/2 ≈ 5.08. This upper

bound was improved by Keil and Gutwin [6] in 1989
to 2π/(3 cos(π/6)) ≈ 2.42. For the special case when
the point set S is in convex position, Cui, Kanj and
Xia [4] proved that the Delaunay triangulation of S has
stretch factor at most 2.33. Recently, Xia [7] proposed
to study the stretch factor of the Delaunay triangulation
by focusing on the stretch factor of a chain of circles in
the plane. With this approach, Xia [7] proved that the
stretch factor of the Delaunay triangulation is less than
1.998.
Following the same approach as that in [7], we investi-

gate the tight bound on the stretch factor of the Delau-
nay triangulation by studying the stretch factor of the
chain. We define a sequence Γ = (Γ1,Γ2,Γ3, . . .) where
Γi is the maximum stretch factor of a chain of i circles.
We prove that Γ is strictly increasing, which implies
that the tight bound of the stretch factor of the chain
is the limit of Γ. We then proceed to investigate what
kind of chains achieve the stretch factors in Γ. To that
end, we define a family of chains C = {C3, C5, C7, . . .},
each having odd number of circles and satisfying certain
structural properties. We conjecture that for all odd
numbers n ≥ 3, the stretch factor of the chain Cn ∈ C is
Γn. If this conjecture is true, then the problem of find-
ing the tight bound is reduced to computing the limit
of the stretch factor of the chains in C.
Even without proving the conjecture, studying the

stretch factor of the chains in C is still interesting. It
yields improved lower bound. To illustrate this, we com-
pute the chains Cn ∈ C for n = 3, 5, 7, . . . , 31. This
yields a lower bound of 1.5932 for the stretch factors
of the Delaunay triangulation, improving the previous
lower bound of 1.5846 by Bose et al. [2].
The paper is organized as follows. The necessary defi-

nitions are given in Section 2. In Section 3, we show that
Γ is strictly increasing by proving that one can always
increase the stretch factor of a chain by adding a circle
to it. In Section 4, we present an improved lower bound
of the stretch factors of the Delaunay triangulation. We
conclude the paper in Section 5 with a conjecture and a
question that are key to finding the tight bound of the
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stretch factor of the Delaunay triangulation.

2 Preliminaries

We label the points in the plane by lower case letters,
such as p, q, u, v, etc. For any two points p, q in the
plane, denote by pq a line in the plane passing through
p and q, by pq the line segment connecting p and q, and
by −→pq the ray from p to q. The Euclidean distance be-
tween p and q is denoted by ||pq||. The length of a path
P in the plane is denoted by |P |. Any angle denoted
by ∠poq is measured from −→op to −→oq in the counterclock-

wise direction. Unless otherwise specified, the angles
are defined in the range (−π, π].

Definition 1 We say that a sequence of distinct fi-
nite circles1 C = (O1, O2, . . . , On) in the plane is a
chain2 if it has the following three properties. Prop-
erty (1): Every two consecutive circles Oi, Oi+1 inter-
sect, 1 ≤ i ≤ n− 1. Let ai and bi be the shared points
on their boundary (in the special case where Oi, Oi+1

are tangent, ai = bi). Without loss of generality, as-
sume ai’s are on one side of C and bi’s are on the other
side. Denote by C

(i+1)
i the arc on the boundary of Oi

that is in Oi+1, and by C
(i)
i+1 the arc on the boundary

of Oi+1 that is in Oi. We refer to C
(i+1)
i and C

(i)
i+1 as

“connecting arcs”. Property (2): The connecting arcs

C
(i−1)
i and C

(i+1)
i on the same circle Oi do not overlap,

for 2 ≤ i ≤ n − 1; i.e., C
(i−1)
i and C

(i+1)
i do not share

any point other than a boundary point. Property (3):
There is a ray −→r that crosses line segments aibi for all
1 ≤ i ≤ n − 1 in that order. Let u be the entry-point
of −→r on O1 and v the exit-point of −→r on On. We call
u, v a pair of terminal points (or simply terminals) of
the chain C. See Figure 1 for an illustration.

For notational convenience, define a0 = b0 = u and
an = bn = v. Every circle Oi has two arcs on its bound-
ary between the line segments ai−1bi−1 and aibi, de-
noted by Ai and Bi. Without loss of generality, assume
that ai−1, ai are the ends of Ai and bi−1, bi are the ends
of Bi, for 1 ≤ i ≤ n. This means that PA = A1 . . . An

is a path from u to v on one side of the chain and
PB = B1 . . . Bn is a path from u to v on the other
side of the chain. An arc Ai or Bi may degenerate to a
point, in which case ai−1 = ai or bi−1 = bi, respectively.
We define the shortest path between u and v

in C, denoted by PC(u, v), to be the shortest
path from u to v while traveling along arcs in
{A1, . . . , An} ∪ {B1, . . . , Bn} and line segments in

1In this paper, a circle is considered to be a closed disk in the
plane

2Note that our definition of a chain is slightly different from
the chain defined in [7]. Our chain has an additional Property
(3).
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Figure 1: A chain C. The connecting arcs are green
(gray in black and white printing). The connecting arcs
on the boundary of the same circle are disjoint. Points
u and v are a pair of terminals of C.

{a1b1, . . . , an−1bn−1}. Its length, |PC(u, v)|, is the to-
tal length of the edges in PC(u, v). For example, in
Figure 1, PC(u, v) is the shortest path from u to v while
traveling along the thick arcs and lines.
Now we can define the stretch factor of a chain C to

be the maximum value of

|PC(u, v)|/||uv||, (1)

over all terminals u, v of C. The stretch factor of a
chain is analogous to that of a Delaunay triangulation.
From [7], the maximum stretch factor of the chain is an
upper bound of the maximum stretch factor of the De-
launay triangulation. We believe that these two quan-
tities are in fact equal (we discuss this in details in Sec-
tion 4).

3 On the Tight Bound

Let Γ = (Γ1,Γ2,Γ3, . . .) be a sequence where Γi is the
maximum stretch factor of a chain of i circles. In this
section we show that Γ is strictly increasing. This im-
plies that the tight bound of the stretch factor of the
chain is the limit of Γ: limi→∞ Γi.

Theorem 2 For all n ≥ 1, Γn+1 > Γn.

Proof. Let C be a chain with stretch factor ρ = Γn.
Without loss of generality, assume that C has the min-

imum number of circles among all chains whose stretch
factor is Γn. We will add a circle On+1 to C such that
the new chain C′ has a stretch factor > ρ.
Refer to Figure 2. Let u, v be terminals of C with

stretch factor ρ. Without loss of generality, assume that
an−1 is above uv and bn−1 is below uv. By flipping
around uv, we can assume that on is on or below uv.
We can also assume that v is not on the boundary of
On−1 because otherwise, we can remove On from C and
still have the same stretch factor—a contradiction to
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Figure 2: Illustration of adding a new circle On+1 to C.

the fact that C is a chain of minimum number of circles
with stretch factor ρ.

This means that there exist two points an and bn
sufficiently close to v on the boundary of On such that

|÷van| − |÷vbn| = ||anbn||, (2)

where÷van (resp. ÷vbn) is the arc on the boundary of On

between v and an (resp. between v and bn).

Add a new circle On+1 going through an and bn whose
center is on+1. Denote the new chain by C′. Let v′ be
the point on On+1 such that

|øv′an| − |øv′bn| = ||anbn||, (3)

where øv′an (resp. øv′bn) is the arc on the boundary of
On+1 between v′ and an (resp. between v′ and bn).

Refer to Figure 2. Let α be the angle from −−−−→onon+1 to
−−→onan, β the angle from −→onv to −−−−→onon+1, and γ the angle
from −→uv to −−−−→onon+1.

Let ∆O = ||onon+1||, ∆P = |PC′(u, v′)| − |PC(u, v)|,
and ∆D = ||uv′|| − ||uv||. By a standard, if lengthy,
calculation, we have the following from [7]:

lim
∆O→0

∆P

∆O

= sinα− α cosα, (4)

and

lim
∆O→0

∆D

∆O

= cos γ − cosα(cos(β − γ) + β sin(β − γ)).

(5)

Let rn be the radius of On. Note that |÷van| = (α +

β)rn, |÷vbn| = (α− β)rn, and ||anbn|| = 2 sinαrn. From
(2), we have (α + β)rn − (α − β)rn = 2 sinαrn. This

means β = sinα. We have

lim
∆O→0

∆P

∆D

=
sinα− α cosα

cos γ − cosα(cos(β − γ) + β sin(β − γ))

=
sinα− α cosα

cos γ − cosα(cos(sinα− γ) + sinα sin(sinα− γ))
.

(6)

Set α small enough, say α = 0.01. Then

lim
∆O→0

∆P

∆D

{α = 0.01, γ = 0} > 66. (7)

Refer to Figure 2. Let ∆V = ||vv′||. When γ = 0, we
have

∆D {γ = 0} = − cos(∠v′vu′)∆V . (8)

When γ > 0, we have

∆D {γ > 0} = − cos(∠v′vu)∆V . (9)

Let q and q′ be the exit-point of −−−−→onon+1 on the boundary
of On and On+1, respectively. Then |õvq| = ||anbn||/2 =

|÷v′q′|, whereõvq is the arc between v and q on the bound-

ary of On and÷v′q′ is the arc between v′ and q′ on the
boundary of On+1. Since α is small and ∆O → 0, we
have rn > rn+1. It is easy to see that 0 < ∠v′vu <
∠v′vu′. Also ∠v′vu′ < π because the distance from v′ to
line onon+1 is less than the distance from v to onon+1.
This means − cos(∠v′vu) < − cos(∠v′vu′). From (8)
and (9), we have

∆D {γ > 0} < ∆D {γ = 0}.

Therefore

lim
∆O→0

∆P

∆D

{α = 0.01, γ > 0}

> lim
∆O→0

∆P

∆D

{α = 0.01, γ = 0}

> 66. (10)

Since on is on or below uv, γ > 0. When ∆O → 0 and
α small enough, we have ∆P

∆D
> 66. From [7], the stretch

factor of the chain is less than 2. So |PC(u,v)|
||uv|| = ρ < 2.

Therefore, we have

|PC′(u, v′)|
||uv′|| =

|PC(u, v)|+∆P

||uv||+∆D

>
|PC(u, v)|
||uv|| = ρ.

This completes the proof. �

4 Improved Lower bounds

A natural question is what kind of chains achieve the
worst stretch factor Γn. We present chains of 3, 5, 7,
15, 31 circles (see Figure 3) with stretch factors 1.5894,
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(a) A chain a 3 circles with stretch factor ρ3 ≈ 1.5894. (b) A Delaunay triangulation based on a chain of 3 circles with the
same stretch factor as ρ3 ≈ 1.5894. The orange “shield” points are
added to prevent short-cuts outside of the chain.

(c) A chain of 5 circles with stretch factor ρ5 ≈ 1.5919. (d) A chain of 7 circles with stretch factor ρ7 ≈ 1.5926.

(e) A chain of 15 circles with stretch factor ρ15 ≈ 1.5931. (f) A chain of 31 circles with stretch factor ρ31 ≈ 1.5932.

Figure 3: Illustration of the chains with improved lower bounds. The green line connects terminals u and v. The
red dots are the centers of the circles in the chain. The blue lines in (b) show the Delaunay triangulation.
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1.5919, 1.5926, 1.5931, and 1.5932, respectively. The
exact configuration of the chain of 31 circles is given in
the Appendix.

For each chain given in Figure 3, we can create a
Delaunay triangulation with the same stretch factor as
follows: place points of S densely on the outer bound-
ary of Cn. With a small perturbation, one can ensure
that the edges of the Delaunay triangulation inside the
chain do not provide a short-cut for any shortest path
between the terminals u and v in the chain, as shown
in Figure 3(b). In order to prevent short-cuts outside
of the chains, we use the technique of Bose et al. [2] by
adding “shield” points, shown as the orange points in
Figure 3(b). This yields a lower bound of 1.5932 on the
stretch factor of the Delaunay triangulation, improv-
ing the previous best lower bound of 1.5846 by Bose et
al. [1].

Theorem 3 There exists a set S of points in the plane,

such that the Delaunay triangulation of S has a stretch

factor of at least 1.5932.

5 Toward the Tight Bound

The chains Cn in Figure 3 all share the following prop-
erties: let n = 2k + 1 and let u and v be the terminals
of Cn, then

1. for all 1 ≤ i ≤ k, Ok+1+i and Ok+1−i are symmetric
around a line l passing through ok+1, the center of
Ok+1,

2. Ok, Ok+1 and Ok+2 share a point on l,

3. the radii of Ok+1, Ok+2, . . ., O2k+1 are in decreas-
ing order and the radii of O1, O2, . . ., Ok+1 are in
increasing order,

4. for any 1 ≤ i ≤ n−1, aibi is contained in a shortest
path from u to v, and

5. both PA = A1 . . . An and PB = B1 . . . Bn are short-
est paths from u to v.

We conjecture that these properties are shared by a
chain with the worst stretch factor:

Conjecture 4 For all n = 2k + 1 ≥ 3 there is a chain

of n circles with stretch Γn that satisfies Properties 1–5.

Note that we can assume Property 5 is true because
of the following observation.

Proposition 5 ([7]) There is a chain C∗ of n circles

with stretch factor Γn, in which both PA and PB are

shortest paths.

Figure 4: A chain of 4 circles with stretch factor 1.5907.

Proposition 5 was proved in [7] using a technique that
transforms any chain of n circles into C∗ without reduc-
ing the stretch factor. A similar technique of transfor-
mation may be helpful in proving other properties.

If Conjecture 4 is true, the task of finding the tight
bound of the stretch factor of the Delaunay triangula-
tion is reduced to answering the following question.

Question: What is the worst stretch factor of
a chain satisfying Conditions 1–5.

Even without proving Conjecture 4, the answer to this
question will give an improved lower bound of the
stretch factor of the Delaunay triangulation.

Finally, note that a chain of even number of circles
with the maximum stretch factor may not have the sym-
metry exhibited by the chains of odd number of circles.
See Figure 4 for a chain of 4 circles with stretch factor
1.5907. This chain is not symmetric and all circles in it
have different sizes.
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Appendix

In the following, we give the exact configurations of
chains of 31 circles, as shown in Figure 3 (f). Let n = 31.
ρn is the stretch factor, b1 is the angle from −→o1u to
−−→o2o1, and bn is the angle from −−−−→on−1on to −→onv. For all
1 ≤ i ≤ n, (xi, yi) are the x- and y-coordinates of oi—
the center of Oi, and ri is the radius of Oi.

ρ31 = 1.59321532337905

(x1, y1) = (−82.83285023949975,−25.121488078241036)

r1 = 27.2227454174619

(x2, y2) = (−72.85751097488247,−28.607891622305775)

r2 = 37.5929692832941

(x3, y3) = (−65.06105288129035,−30.244664465966718)

r3 = 45.2705987926872

(x4, y4) = (−58.46281391202502,−30.896769916666095)

r4 = 51.5306676497054

(x5, y5) = (−52.71657386093427,−30.908699522242472)

r5 = 56.8317425129397

(x6, y6) = (−47.641009930136384,−30.47042857093014)

r6 = 61.4105580627107

(x7, y7) = (−43.12496351134913,−29.70369563073232)

r7 = 65.4084222645816

(x8, y8) = (−39.09176839012416,−28.69398435657018)

r8 = 68.9185983263288

(x9, y9) = (−35.4841587781849,−27.505033297273425)

r9 = 72.0068096919405

(x10, y10) = (−32.25667996954523,−26.186384074676056)

r10 = 74.7216529992949

(x11, y11) = (−29.371513326910353,−24.777713407816105)

r11 = 77.1003848112902

(x12, y12) = (−26.795869450721117,−23.311439841674048)

r12 = 79.1724821194007

(x13, y13) = (−24.50025982738938,−21.814336462991804)

r13 = 80.9619450886396

(x14, y14) = (−22.457239646974063,−20.308501263020666)

r14 = 82.488877282518

(x15, y15) = (−20.639566299045978,−18.8111754808014)

r15 = 83.7712177530083

(x16, y16) = (0.0, 0.0)

r16 = 100.0

(x17, y17) = (20.639566299045978,−18.8111754808014)

r17 = 83.7712177530083

(x18, y18) = (22.457239646974063,−20.308501263020666)

r18 = 82.488877282518

(x19, y19) = (24.50025982738938,−21.814336462991804)

r19 = 80.9619450886396

(x20, y20) = (26.795869450721117,−23.311439841674048)

r20 = 79.1724821194007

(x21, y21) = (29.371513326910353,−24.777713407816105)

r21 = 77.1003848112902

(x22, y22) = (32.25667996954523,−26.186384074676056)

r22 = 74.7216529992949

(x23, y23) = (35.4841587781849,−27.505033297273425)

r23 = 72.0068096919405

(x24, y24) = (39.09176839012416,−28.69398435657018)

r24 = 68.9185983263288

(x25, y25) = (43.12496351134913,−29.70369563073232)

r25 = 65.4084222645816

(x26, y26) = (47.641009930136384,−30.47042857093014)

r26 = 61.4105580627107

(x27, y27) = (52.71657386093427,−30.908699522242472)

r27 = 56.8317425129397

(x28, y28) = (58.46281391202502,−30.896769916666095)

r28 = 51.5306676497054

(x29, y29) = (65.06105288129035,−30.244664465966718)

r29 = 45.2705987926872

(x30, y30) = (72.85751097488247,−28.607891622305775)

r30 = 37.5929692832941

(x31, y31) = (82.83285023949975,−25.121488078241036)

r31 = 27.2227454174619

b1 = b31 = 0.22563636621218


