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Convex blocking and partial orders on the plane1
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Abstract

Let C = {c1, . . . , cn} be a collection of disjoint closed
convex sets in the plane. Suppose that one of them,
say c1, represents a valuable object we want to uncover,
and we are allowed to pick a direction α ∈ [0, 2π) along
which we can translate (remove) the elements of C one
at a time while avoiding collisions. In this paper we find
an O(n2 log n) time algorithm that finds a direction α
that minimizes the number of elements of C that have
to be removed before we can reach c1.

1 Introduction

Consider a set C = {c1, . . . , cn} of pairwise disjoint
closed bounded convex sets, and a direction α ∈ [0, 2π);
e.g., the vertical upwards direction. It is well known
that the elements of C can be translated (removed) one
at a time by moving them upwards while avoiding colli-
sions with other elements of C [7, 10]. Suppose that c1
is a special object that we want to uncover, and that we
are allowed to choose a direction α along which we can
remove the elements of C one at a time while avoiding
collisions.

We want to find the direction α that minimizes the
number of elements we need to remove before we reach
c1. In Figure 1, it is easy to see that if we remove the
elements of C in the direction α2, four elements of C
have to be removed before we reach c1, while for α1 we
only need to remove two.

This problem can be seen as a variant of the problem
known in computational geometry as the separability
problem [2, 5, 9]. It is also related to spherical orders
determined by light obstructions [6].

In this paper we present an O(n2 log n) time algo-
rithm to solve this problem, assuming that for every
pair of elements of C we can compute a tangent line to
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Figure 1: A set C of convex sets.

both of them in constant time.

2 Preliminaries

Let X be a finite set, and < a relation on the elements
of X that satisfies the following conditions: (a) If x < y
and y < z then x < z (transitivity), and (b) x ≮ x
(antireflexivity). The set X together with < is called a
partial order, and it is usually denoted as P (X,<).

Given x, y ∈ X, we say that y covers x if x < y and
there is no element w ∈ X such that x < w < y. The
diagram of P (X,<) is the directed graph whose vertices
are the elements of X and there is an oriented edge from
x to y if y covers x. We say that the diagram of P (X,<)
is planar if it can be drawn on the plane in such a way
that the elements of X are represented by points on
the plane, no edges of G intersect, except perhaps at a
common endpoint, and if y is a cover of x, then they
are joined by a monotonically increasing oriented edge
from x to y (in the vertical direction).

Given two elements x, y ∈ X, a supremum of them is
an element w ∈ X such that x < w, y < w, and for any
other element z ∈ X such that x < z and y < z we have
that w < z. An infimum is defined in a similar way,
except that we require w to be w < x and w < y. An
ordered set is called a lattice if any two elements have
a unique supremum and infimum. A lattice is called a
planar lattice if its diagram is planar. Finally, a finite
order P (<,X) is called a truncated planar lattice if by
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adding to P (<,X) both a least and a greatest element
the resulting order is a planar lattice.

Let C = {c1, . . . , cn} be a set of disjoint closed convex
sets on the plane. Given two convex sets ci and cj in C,
we say that cj is an upper cover of ci in the direction
α (for short, an α-cover) if the following conditions are
satisfied:

1. There is at least one directed line segment with
direction α starting at a point in ci and ending at
a point in cj .

2. Any directed line segment with direction α starting
at a point in ci and ending at a point in cj does not
intersect any other element of C.

Observe that if cj is an α-cover of ci, then ci is an
(α + π)-cover of cj . We say that cj blocks ci in the
direction α, written as ci ≺α cj , if there is a sequence
ci = cσ(1), cσ(2), . . . , cσ(k) = cj of elements of C such
that cσ(r+1) is an α-cover of cσ(r), r = 1, . . . , k− 1 (Fig-
ure 2).

Figure 2: cj is an α-cover of cσ(3) and ci ≺α cj .

Clearly if ci ≺α cj and cj ≺α ck, then ci ≺α ck, and
thus C together with the blocking relation ≺α is a par-
tial order on C, which we will denote as P (≺α, C). It is
known that P (≺α, C) is a truncated planar lattice [10].

The diagram of such truncated lattice has the ele-
ments of C as vertices and there is an oriented edge
from ci to cj if cj is an α-cover of ci (Figure 3). The
elements of C that we need to remove in the α direction
before an element ci of C is reached are those convex
sets cj such that ci ≺α cj , the set containing these ele-
ments will be called the α-upper set of ci, or for short,
the α-up-set of ci in α. Thus our problem reduces to
that of finding the direction α such that the cardinality
of the α-up-set of c1 is minimized.

Observe that as α changes, so does P (≺α, C). In
fact, it is easy to find families of convex sets for which
P (≺α, C) changes a quadratic number of times. We
proceed now to prove some properties of P (≺α, C), 0 ≤
α < 2π which will allow us to find an α such that the
α-up-set of c1 has minimum cardinality in O(n2 log n)
time.

Given a convex set c, a line ` is called a supporting
line of c if it intersects c, and c is contained in one of the

closed half planes determined by `. Given two convex
sets ci and cj , a line ` is called an internal tangent of
them if ` supports them, and ci is contained in one of
the closed half planes determined by `, and cj in the
other. A set of directions I is called an interval, if there
are α, β ≤ 2π such that the elements of I are angles of
the form α+ δ, 0 ≤ δ ≤ β, addition taken mod 2π.

Figure 3: Diagram of P (≺α, C) for α = π/2.

Lemma 1 Let ci and cj be two convex sets in C. The
set of directions in which cj blocks ci is a non-empty
interval Ii,j.

Proof. Clearly a direction in which cj does not block ci
always exists. Without loss of generality we will assume
that such direction is 0.

Let θ1 be the first direction greater than 0 where
ci ≺θ1 cj : Such θ1 exists because cj always blocks ci
in a set of directions enclosed by the two internal tan-
gents defined by ci and cj .

Let θ2 be the last direction greater than θ1 such that
for any γ ∈ [θ1, θ2] ci ≺γ cj . If there is no other direction
γ ∈ [θ2, 2π] where ci ≺γ cj then our result holds. Sup-
pose then that there are θ3 and θ4 such that i) θ2 < θ3,
ii) θ3 < θ4 < 2π, and for γ ∈ [θ3, θ4], ci ≺γ cj , and iii)
for any γ ∈ [θ2, θ3], ci 6≺γ cj , (Figure 4).

Clearly θ3 − θ2 < π, or θ1 − θ4 < π, where the sec-
ond angle is taken modulo 2π. Assume without loss of
generality that θ3 − θ2 < π, and that 0 < θ2 <

π
2 < θ3,

for otherwise we can rotate C appropriately until this
condition holds.

Let γ = π
2 , then ci 6≺γ cj . Since ci ≺θ2 cj , we

know that there is a sequence ci = cσ(1), cσ(2), . . . ,
cσ(k) = cj such that cσ(r+1) is a θ2-cover of cσ(r) for
r = 1, . . . , k−1. For the same reason, there is a sequence
ci = cω(1), cω(2), . . . , cω(m) = cj such that cω(r+1) is a θ3-
cover of cω(r) for r = 1, . . . ,m − 1. The two sequences
differ in at least one element, otherwise our gap would
not exist.

Let `1 and `2 be the supporting lines of ci in the γ
direction: Since ci 6≺γ cj , cj cannot intersect the interior
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Figure 4: We can assume that θ3 − θ2 < π.

of the strip bounded by `1 and `2. Suppose first that cj
is to the left of this strip (Figure 5).

Figure 5: cj to the left of `1 and `2.

Since cσ(2) is a θ2-cover of ci = cσ(1), there is a line
segment parallel to the direction θ2 with endpoints in
ci = cσ(1) and cσ(2). Similarly for cσ(r) and cσ(r+1),
there is a line segment parallel to the direction θ2 with
endpoints in cσ(r) and cσ(r+1), r ∈ {2, . . . , k − 1}. Each
cσ(r), r ∈ {2, . . . , k − 1}, contains two endpoints from
two of this segments, and this endpoints can be joined
with a line segment totally contained in cσ(r).

This forms a connected curve that starts in ci and
ends in cj , passing through all the elements of the se-
quence. This curve consist of two types of line segments:
Those parallel to the θ2 direction, and those completely
contained in the elements of the sequences. But θ2 < γ,
so the first type always goes to the right. And the sec-
ond type may go to the left, but contained in an element
of the sequence (Figure 6).

The only way such a curve exists, is if at least one
element in {cσ(1), cσ(2), . . . , cσ(k)} intersects the strip

Figure 6: A sequence of θ2-covers from cj to ci, and the
curve that passes through the elements of it.

bounded by `1 and `2, which implies that ci ≺γ cj , a
contradiction!

If we suppose that cj is to the right of `2, a
contradiction arises, but using the sequence ci =
cω(1), cω(2), . . . , cω(m) = cj in the θ3 direction. There-
fore, the directions where cj blocks ci form a non-empty
interval. �

It follows from the proof of Lemma 1 that the end-
points of the intervals Ii,j are defined by the internal
tangents of pairs of elements in C. The next observa-
tion follows:

Observation 1 There are at most 4
(
n
2

)
combinatori-

ally distinct values of α where P (≺α, C) may change;
these changes occur in slopes generated by internal tan-
gents between pairs of elements of C.

We can then reduce the search space for α0 to the set
D = {γ1, . . . , γ4(n

2)} containing these directions. For the
sake of clarity, we are supposing that no two internal
tangents are parallel and that the elements of D are
ordered as γi < γj if i < j.

We observe that D can be calculated in O(n2 log n) if
we suppose that the internal tangents between any two
convex sets in C can be determined in constant time.
For each γk we can store the indexes i, j of the convex
sets that define the internal tangent.

3 α-triangulations

Our problem can be solved by calculating the truncated
lattices P (≺γi

, C) for every direction γi ∈ D, and then
obtaining the γi-up-set of c1 in each one of them. Select-
ing a γi ∈ D which produces a smallest γi-up-set yields



23rd Canadian Conference on Computational Geometry, 2011

an optimal solution. Since calculating the truncated lat-
tice has a cost of O(n log n) time for each of the 4

(
n
2

)
directions in D [10], this results in an O(n3 log n)-time
algorithm to solve our problem.

To improve this complexity, we will show that we need
to calculate from scratch only one truncated lattice. For
the remaining directions of D the corresponding trun-
cated lattice (more precisely, the α-triangulation, to be
described shortly) can be updated in constant time.

For each direction α ∈ [0, 2π), we extend P (≺α, C)
to a planar lattice P ′(≺α, C) by adding two special ver-
tices, a source s and a sink t, i.e. for each ci ∈ C,
s ≺α ci ≺α t. For a fixed direction we can picture t as a
very large convex set standing above all of C, and s as a
very large convex set standing below all of C (Figure 7).

Figure 7: The lattice P ′(≺α, C) for α = π/2.

For each α, we now extend P ′(≺α, C) to a triangula-
tion Tα, that is, a planar graph where every internal face
is a triangle, which we will call an α-triangulation, by
adding oriented edges avoiding creating oriented cycles
(Figure 8).

By Observation 1 there are at most 4
(
n
2

)
triangula-

tions, and we want to know how Tα changes as α goes
from γk to γk+1. We remark that there are cases when
the triangulations Tγk

and Tγk+1 are the same (Figure 9).
The next observation will be used:

Observation 2 Let α, β be such that P (≺α, C) 6=
P (≺β , C), then there is at least one pair of elements
ci, cj ∈ C such that cj is an α-cover of ci in P (≺α, C),
and it is not a β-cover of ci in P (≺β , C), or vice versa;
that is, the set of edges of the diagram of P (≺α, C)
is different from the set of edges of the diagram of
P (≺β , C). Moreover, if α, β ∈ D, then ci and cj de-
fine α or β.

Figure 8: The triangulation Tα for α = π
2
.

Figure 9: The triangulations Tγk and Tγk+1 are the same,
since the partial order does not change.

It turns out that the difference between the Tγk
and

Tγk+1 triangulations is an arc flip, as defined in [8]:

Lemma 2 Given the triangulation Tγk
, the triangula-

tion Tγk+1 can be obtained from Tγk
(if they are differ-

ent) by flipping an arc in Tγk
. Such an arc flip either

adds or removes an arc between the convex sets ci and
cj that define γk+1.

Proof. Suppose that P (≺γk
, C) and P (≺γk+1 , C) are

different. By Observation 2 two cases arise:

1. There are two elements ci and cj of C that generate
γk such that cj is a γk-cover of ci, but it is not a
γk+1-cover of ci.

2. The elements ci and cj that generate γk+1 become
comparable in P (≺γk+1 , C), and one of them, say
cj is a γk+1-cover of ci.

In case 1 when we flip the edge connecting ci to cj in
Tγk

they become not comparable in Tγk+1 . Furthermore
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it is easy to see that there is a line parallel to the γk+1

direction that separates ci from cj , and that this line
intersects two elements of C ∪ {s, t}− {ci, cj}. This are
the two vertices that become adjacent as we flip the edge
connecting ci and cj . Thus Tγk+1 can be obtained from
Tγk

in constant time.
In the second case the inverse occurs. �

In Figure 10 and Figure 11 we can see an example of
the arc flip performed in the proof of Lemma 2.

Figure 10: The arc ci → cj before flipping.

Figure 11: The arc ca → cb after flipping.

4 An O(n2 log n) algorithm to find α0

Theorem 3 Finding α0 can be done in O(n2 log n).

To prove Theorem 3 we need the following result:

Lemma 4 For any element ci, as we go from γ1 to
γ4(n

2), the up-set of ci changes O(n) times.

Proof. By Lemma 1, the set of directions for which cj
blocks ci is an interval Ii,j . This means that for each
cj 6= ci in C, as we go from γ1 to γ4(n

2), cj starts to
block ci once and stops blocking it once. Therefore the
up-set of ci changes a linear number of times, that is
any cj ∈ C enters and exits it once. �

We proceed now with the proof of Theorem 3.

Proof. We first generate the set D of critical direc-
tions in O(n2) time. Observe that this can be done
in quadratic time since we are assuming that the tan-
gents generated by two elements of C can be calculated
in constant time. Next we sort the elements of D in
O(n2 log n) time. When we store each γi ∈ D we also
store the elements of C that generate it. Next we con-
struct Tγ1 in O(n log n) time, coloring the vertices of the
triangulation as follows:

• We color red the elements of C in the γ1-up-set of
c1, including c1.

• We color blue the remaining elements of C.

At this stage, we also calculate the number of incom-
ing arcs to each ci whose initial vertex is blue, or red.
Such a coloring can be done in O(n) time. Let ci and cj
be the elements that generated γk+1. It is easy to check
that if cj was not a γk-cover of ci or vice versa, then
P (≺γk

, C) = P (≺γk+1 , C) and the up-set of c1 does not
change. Suppose then that cj was a γk-cover of ci. By
Lemma 2, P (≺γk

, C) 6= P (≺γk+1 , C) and we can obtain
Tγk+1 from Tγk

in constant time. The crucial part of our
procedure is how to update the up-set of c1.

Suppose first that the elements ci and cj that deter-
mine γk+1 are different from c1.

Several cases arise.

1. c1 ≺γk
ci, c1 ≺γk

cj , and ci is not comparable
to cj in P (≺γk

, C), but ci is comparable to cj in
P (≺γk+1 , C). In this case, the up-set of c1 remains
unchanged.

2. c1 ≺γk
ci, c1 ≺γk

cj , and ci is comparable to cj
in P (≺γk

, C), but ci is not comparable to cj in
P (≺γk+1 , C). In this case the up-set of c1 may
change. Suppose that cj is a γk-cover of ci. Ob-
serve that ci remains in the up-set of c1, but cj may
not belong to it anymore. In this case the arc from
ci to cj is flipped. If at least one arc from a red
element cr to cj remains then cj remains in the up-
set of c1, otherwise the up-set of c1 changes, and is
recalculated in linear time.
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3. ci and cj do not belong to the up-set of c1. In this
case, the up-set of c1 does not change.

4. ci ≺γk
cj and ci is not in the up-set of c1 in

P (≺γk
, C). The up-set of c1 remains unchanged

in P (≺γk+1 , C).

5. ci 6≺γk
cj , cj is not in the up-set of c1, and ci belongs

to the up-set of c1. In this case, cj is an γk+1-cover
of ci and the up-set of c1 changes. Therefore we
must recalculate the up-set of c1.

Each time we recalculate the up-set of c1, we also re-
calculate for each ci the number of incoming arcs start-
ing at a blue or red point.

A similar case analysis is carried out when ci = c1,
the details are left to the reader. By Lemma 4, we have
to update the up-set of c1 only a linear number of times,
and thus the whole process takes O(n2 log n) time. This
proves Theorem 3. �

5 Conclusions

In this paper we studied a variant of the classic separa-
bility problem. Given a set C = {c1, . . . , cn} of pairwise
disjoint closed convex sets, find a direction αminimizing
the number of elements of C that have to be removed,
in the direction α, before we reach a particular element
c1 ∈ C. We presented an O(n2 log n)-time algorithm
to solve this problem, under the assumption that the
internal tangents between any two sets of C can be cal-
culated in constant time: For example, this is the case
for circles and ellipses, convex polygons with a constant
number of sides, and shapes defined by a constant num-
ber of Bézier curves.

We suspect that the complexity of our problem is
Ω(n2 log n). In particular any approach that has to sort
the elements of D may in general take O(n2 log n) time
unless some extra restrictions on the elements of C are
imposed. For example for circles, we can sort the slopes
generated by them in quadratic time (using the dual
space), improving the complexity of our algorithm to
O(n2). The details of this will be given in the full ver-
sion of this paper.

It is easy to see that if we want to calculate for each
ci ∈ C the number of elements that have to be removed
before we can remove ci, this can be done in O(n3).
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