
CCCG 2011, Toronto ON, August 10–12, 2011

Approximating the Medial Axis by Shooting Rays: 3D Case

Svetlana Stolpner∗ Kaleem Siddiqi† Sue Whitesides‡

Abstract

We consider an algorithm, first presented in [13], that
outputs regions intersected by the medial axis of a 3D
solid. In practice, this algorithm is used to approxi-
mate the medial axis with a collection of points having
a desired density. The quality of the medial axis ap-
proximation is supported by experimental results. De-
spite promising 2D results, the algorithm’s theoretical
guarantees are not understood in 3D. The contribution
of this article is to initiate the 3D theoretical analysis
by presenting properties of medial points that are not
detected by the algorithm for a finite sampling rate.

1 Introduction

Consider an orientable 3D solid Ω with boundary B.

Definition 1 The medial axis MA of Ω is the set of
centres of maximal (for the inclusion order) inscribed
balls in Ω.

For example, Figure 1 shows the medial axis of a box.
Figure 3 shows subsets of medial axes of more complex
inputs. The medial axis, introduced in [3], is a valuable
shape descriptor with applications to computer vision,
computer graphics, GIS and robotics [11], as it captures
local width information and part structure. Computing
an accurate, robust, and useful shape descriptor based
on the medial axis for complex 3D inputs remains a sub-
ject of ongoing research. In this article, we study the
theoretical properties of an algorithm for medial axis ap-
proximation, which is shown to be successful at generat-
ing qualitatively meaningful approximations in practice
in [14]. The following definition will be central:

Definition 2 The Euclidean distance transform of Ω
is given by D(p) = − infq∈B d(p, q), where p ∈ Ω and
d(p, q) denotes Euclidean distance.

The gradient of D, ∇D : R3 → R3 is a vector field
that assigns each point p the direction to its nearest
point on B, whenever this direction is uniquely defined.
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The vector field ∇D is uniquely defined for all points
inside Ω except for those on the medial axis. As me-
dial points have two or more nearest boundary loca-
tions, ∇D is multi-valued on the medial axis. This
property is the basis for Algorithms 1 and 2 that lo-
cate medial points: we will look for regions where ∇D
is multi-valued.

Figure 1: The medial
axis of a box.

Given a medial point
m ∈ MA, equidistant
from exactly two bound-
ary points, the directions
to its nearest boundary
points are called the spoke
vectors. The angle be-
tween the two spoke vec-
tors is twice the object an-
gle of m. The object angle
θ in Figure 1 is π/4. The
distance from m to B is the
radius of m. Object angle
and radius are popular measures used to guide pruning
of “insignificant” medial points [6, 8, 2, 12].

Previous Work When Ω is a polyhedron, [5] com-
putes the edges of the medial axis of a polyhedron with
a small number of faces using exact arithmetic. For ob-
jects whose boundary is given as a set of points, [1, 6] ap-
proximate the medial axis using a subset of the Voronoi
vertices of the set of boundary points, and show con-
vergence for a sufficient sampling density. However,
these methods are very sensitive to noise in the bound-
ary samples, and numerous techniques have been pro-
posed to prune undesirable portions of the computed
medial axes [15, 9]. Methods [7, 16, 4] recursively subdi-
vide space and consider the nearest boundary elements
to the spatial regions. Accuracy is guaranteed when
approximating the generalized Voronoi diagram, where
the diagram is localized by for a sufficiently small spa-
tial resolution. The average outward flux of ∇D in a
region shrinking to zero is used to decide the presence
of medial points in [10]; this concept is generalized to
non-zero regions for polyhedral inputs in [12]. Several
methods consider angles between ∇D vectors for pairs
of points p, q and conclude that a medial point exists on
the midpoint of (p, q) if the two vectors’ tails are closer
than their tips [17, 8].

Organization and Main Results Section 2 reviews
algorithms that analyze ∇D vectors for points sampled
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on the boundary of a sphere to determine if the sphere
contains a medial point, and if so, its approximate lo-
cation. We include experimental results that show col-
lections of medial points computed using this method,
where the density of medial points is user-prescribed.
Our main results are found in Section 3, which discusses
the positions of points to be sampled on the sphere,
and Section 4, which establishes the locations of nearest
boundary points to medial points that are not detected
by our algorithm for a finite sampling rate. Section 5
presents avenues for future work.

2 Shooting Rays Algorithm

Our algorithm for medial axis approximation is based
on the following property of ∇D:

Lemma 1 ([13]) Let p be a point in Ω that is not a
medial point. Let q = p + γ · ∇D(p), such that γ is
a scalar, q is not a medial point, and (p, q) lies inside
Ω. A medial point of Ω lies on (p, q) if and only if
∇D(p) 6= ∇D(q).

Consider a point p on a sphere S. Let l be a line
through p with direction ∇D(p). Define the opposite
of p, opp(p), to be the other point of intersection of l
with the surface of S. In case ∇D(p) is tangent to S
at p, opp(p) = p. Algorithm 1 uses a technique we call
shooting rays to conclude that a sphere is intersected
by the medial axis, when evidence of this is found. If
a medial point lies in S, Algorithm 1 will necessarily
return ‘True’ for a sufficiently dense set of points Φ.
However, for a finite Φ, a medial point may lie in S,
while Algorithm 1 returns ‘Undecided’.

Algorithm 1 DecideMA(B, S,Φ)

Require: Boundary B, sphere S, not intersecting B,
set of points Φ distributed on S.

Ensure: ‘True’ if S contains a medial point, ‘Undeter-
mined’ if no such conclusion can be drawn.

1: for all φi ∈ Φ do
2: if φi or opp(φi) is a medial point then
3: Return ‘True’
4: end if
5: if ∇D(φi) 6= ∇D(opp(φi)) then
6: Return ‘True’
7: end if
8: end for
9: Return ‘Undetermined’

Algorithm 2 performs binary search to estimate the
intersection of the medial axis with a line segment to
a desired accuracy ε. As discussed in [14], we have
successfully used Algorithm 2 to detect medial points
for polyhedral inputs. In our implementation, the in-
terior of a polyhedron is partitioned into regular sized

Algorithm 2 Retract(p, q,B, ε)
Require: Non-medial points p, q interior to B s.t. q =

p+ γ · ∇D(p) and ∇D(p) 6= ∇D(q), tolerance ε.
Ensure: A point within ε of the medial axis of B.
1: while d(p, q) > ε do
2: m = 1

2 (p+ q)
3: if m is a medial point then
4: Return m.
5: end if
6: if ∇D(m) 6= ∇D(p) then
7: q = m
8: else
9: p = m

10: end if
11: end while
12: Return p.

cubes (voxels) and a sphere is circumscribed about each
voxel. For those spheres deemed intersected by the me-
dial axis, we compute the approximate locations of a me-
dial point inside this sphere using Algorithm 2. Among
the approximate medial points found in a sphere cir-
cumscribed about voxel v, we store a single point that
lies inside v and has a sufficiently high object angle. The
voxel size determines the density of the computed set of
medial points. Figure 3 presents examples of the medial
points computed by our method for several polyhedra
of significant geometric complexity. Figure 2 shows the
effect of varying the voxel size on the density of medial
points computed.

Figure 3: Points on the medial axis of three solids with
triangle mesh boundaries computed with our method,
described in [14]. The object angle threshold used is 0.6
radians.
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Figure 2: Medial points computed for the same solid with decreasing voxel size.

Ideally, if Algorithm 1 returns ‘Undetermined’ and a
medial point m lies in S, m should not be a signifi-
cant medial point, such as one of high object angle and
radius. In [13], we described an algorithm based on
an analysis of ∇D vectors in 2D and showed that the
medial points missed by the algorithm become less sig-
nificant as the density of samples on a circle increases.
However, designing effective tools for detecting medial
points in the 3D case is challenging. The next section
describes a situation in which a significant medial point
lies in S, while Algorithm 1 returns ‘Undetermined’.

3 Deep Samples

Suppose that DecideMA(B, S,Φ) returns ’Undeter-
mined’. It may happen that none of the line segments
(φ, opp(φ)) is long enough to penetrate deeply into S
and none intersects the medial axis. As a result, it is
possible to fail to detect medial points in S, as shown in
Figure 4. The medial points missed in this example are
of the highest object angle possible (π/2 for the medial
point at the sphere centre). Further, as the radius of S
can be chosen to be arbitrarily large, the medial points
missed have arbitrarily large radius.

Figure 4: When B
consists of two points
outside the sphere,
the medial axis is
shown as a dashed
line. Points Φ are big
dots on the sphere.

In order to improve the
ability of Algorithm 1 to
detect significant medial
points, we propose to con-
sider two additional query
points cin and cout, defined
as follows. Let the centre
of S be c. Let the nearest
point on the boundary B to
c be C, which is outside S
by the assumption that S
does not intersect B. De-
fine cin, cout ∈ S, where cout
is the intersection of S and
the ray at c with direction−−−→
(c, C) and cin is the inter-
section of S and the ray at

c with direction
−−−→
(C, c). Line

segment (cin, cout) is the longest line segment possible
connecting a pair of points on S. In the example in Fig-
ure 4, ∇D(cin) 6= ∇D(cout). Therefore, in this example,
by including cin and cout among the sampled points on
S, we are guaranteed to detect a medial axis point in S.
If we still do not detect a medial point in S, Lemma 2
characterizes where the set of nearest boundary points
to points sampled on S must lie.

In the proof of the following lemma, we use B(a,A)
to denote a closed ball centred at point a and having
point A on its boundary. Let Θ = Φ

⋃
{opp(φi)|φi ∈ Φ}

be the set of all sampled points considered on S.

Lemma 2 If ∇D(cin) = ∇D(cout) and DecideMA
(B, S,Φ) returns ‘Undetermined’, then all the nearest
points on B to points in Θ lie above the plane π through

cin with normal
−−−→
(c, C).

Proof. Consider point p ∈ Θ whose nearest boundary
point is P . Consider the quantity (P −p) ·NS(p), where
NS(p) is the outer normal to S at p. If (P −p) ·NS(p) >
0, let p be opp(p). Then (P − p) ·NS(p) ≤ 0.

The nearest point on B to p, P , is inside or on
the ball Bp = B(p, C) and outside or on the ball
Bcin = B(cin, C). Refer to Figure 5. Consider the
plane of intersection of Bcin and Bp, π1. Consider also
the tangent plane to S at p, π2. Consider the plane ρ
passing through the points p, cin, cout. Plane ρ is or-
thogonal to planes π, π1 and π2.

Consider the orthogonal projection of P into ρ. Let
(cin, cout) be vertical in ρ. Then P ’s orthogonal pro-
jection lies in the half-plane left of π1 ∩ ρ and in the
half-plane bounded by π2∩ρ containing c. Let p′ be the
intersection of planes ρ, π1 and π2. We will show that
p′ lies above π, and hence, P lies above π. Consider the
line l through p and cin. Note that ∠coutpcin = π/2
and ∠Cpcin > π/2, since C is outside S. Let p′′ be the
intersection of the line l with π1. Since ∠Cpcin > π/2
and l is orthogonal to π1, p′′ is left of p on l. Hence,
p′′, just like p, is above π. Since π2 is tangent to S at p
and since p′′ is left of p on l, p′ is above l on π2 ∩ ρ and
hence, above π. �

Lemma 2 explains how using the sample points cin
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Figure 5: Side view at the objects of interest in the
proof of Lemma 2.

and cout restricts the situations where Algorithm 1 re-
turns ‘Undetermined’. The next section explains how
the set of all possible locations of the two nearest bound-
ary points to a medial point missed by Algorithm 1 can
be computed.

4 Nearest Boundary Points to Missed Medial Points

Suppose that Algorithm 1, DecideMA(B, S,Φ), re-
turns ‘Undetermined’. Consider the convex hull of the
points Θ = Φ

⋃
{opp(φi)|φi ∈ Φ}, CH(Θ). Suppose that

there is a medial point m inside CH(Θ). We would like
to know the locations of m’s nearest points on B.

Recall that Ba = (a,A) is a closed ball with centre
a having point A on its boundary and let d(a, b) be
the Euclidean distance between points a and b. The
following tool will prove helpful in locating the nearest
boundary points to m:

Lemma 3 Consider two closed balls Ba = B(a, Y ) and
Bb = B(b, Y ). Then for any ball Bc = B(c, Y ), c ∈
(a, b), Bc ⊆ Ba ∪Bb.

Proof. 1 Let x be the intersection of line segment (a, b)
with Ba∩Bb (a disk). Let I be the boundary of Ba∩Bb

(a circle). We want to show that the distance from c
to I is less than or equal to d(c, Y ). Let X ∈ I. Then
d(c,X)2 = d(c, x)2+d(x,X)2. Also d(c, Y )2 = d(c, x)2+
d(x, Y )2. However, note that d(x,X)2 = d(x, Y )2, since
X and Y both lie on the circle I with centre x. It follows
that d(c, Y )2 = d(c,X)2 and d(c,X) = d(c, Y ). Thus,
Bc is contained in the union of Ba and Bb. �

Let B be the set of closest points on B to Θ. Let
N = |Φ|. We will assume that there are exactly N

1We thank Nina Amenta for the idea behind this proof.

distinct points in B (this holds when the boundary B is
C1). We now explain how to construct a region of R3

that contains all the possible nearest boundary points
to a medial point m inside CH(Θ). This region will be
found by subtracting the “empty foam” from the “full
foam”, which we define and explain how to compute in
the following discussion.

Empty Foam For each point p ∈ Θ, if P ∈ B is the
nearest boundary point to p, then ball Bp = (p, P ) has
an empty interior and the only point on its boundary is
P . Let Fe =

⋃
Bp \ B be the union of balls hereafter

called the empty foam.
Full Foam Consider the Voronoi diagram of B,

VD(B). Since m is a medial point, it is not one of the
points in Θ. Suppose that m is in A′s Voronoi region,
V (A), A ∈ B. Then m’s nearest point on B is no fur-
ther than d(m,A), i.e. its nearest boundary point is on
or inside the ball Bm = (m,A). Using the information
about A’s Voronoi neighbours, we will find the region
of space that contains Bm. This region of space will be
a union of balls, which we call the full foam of A, FA

f .

The set Ff = {
⋃
FP

f |P ∈ B} is called the full foam.
We now explain how the full foam of A can be com-

puted.
Let {a, opp(a)} ⊂ Θ be the points in Θ that have A

as their nearest boundary point. Let a′ be the nearest
point on the line segment (a, opp(a)) to m. It can be
easily shown that the nearest boundary point to a′ is

A. Consider the ray at a′ with direction
−−−−→
(a′,m). Let m′

be the intersection of this ray with either the bound-
ary of V (A), or CH(Θ), whichever occurs first. Let
Bm′ = B(m′, A). Let Ba′ = B(a′, A). By Lemma 3,
Bm ⊂ Ba′ ∪ Bm′ . Let Ba = B(a,A) and Bopp(a) =
B(opp(a), A). By Lemma 3, Ba′ ⊂ Ba ∪ Bopp(a). We
add Ba and Bopp(a) to FA

f and now proceed to find
spheres that contain Bm′ .

There are several cases: (1) m′ is on a Voronoi face,
(2) m′ is on a Voronoi edge, (3) m′ is on a Voronoi
vertex, or (4) m′ is on CH(Θ). We consider each case
in turn.

Case 1. Suppose that the Voronoi face is a bisector
of points A and B in B. Let bis(A,B) denote the bisec-
tor of points A and B. It is a plane. Consider a plane at
m′ with normal direction (a,A). This plane necessarily

intersects bis(A,B) as
−−−−→
(a′,m) is necessarily not paral-

lel to
−−−→
(a,A) and the intersection is a line on bis(A,B)

passing through m′. By following this line, we will find
two points m∗1 and m∗2, where each point either lies on
an edge of V (A) (Case 2), a vertex of V (A) (Case 3),
or on the CH(Θ) (Case 4). Define Bm∗1

= B(m∗1, A)
and Bm∗2

= B(m∗2, A). Then Bm′ ⊂ Bm∗1
∪ Bm∗2

by
Lemma 3. We now proceed to the respective cases to
find balls containing Bm∗1

and Bm∗2
.

Case 2. Suppose that the Voronoi edge of V (A) is
a trisector of points A, B and C in B. Starting from a
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Figure 6: If a medial point m is in the convex hull of
the 6 sampled points on the boundary of the dark disk
with nearest boundary points A, B, and C, then the
nearest boundary points to m are inside the green disk
and outside the grey disks. The dashed lines are the
bisectors of A, B and C.

point m∗ on the edge, we will move up and down this
edge until either we hit a Voronoi vertex of V (A) (Case
3), or we hit the convex hull of Θ (Case 4) at points v1
and v2. Then m∗ ∈ (v1, v2). Let Bv1 = B(v1, A) and
Bv2 = B(v2, A). Then Bm∗ = B(m∗, A) is contained in
Bv1 ∪Bv2 by Lemma 3. We add Bv1

and Bv2 to the full
foam of A FA

f .

Case 3. Any Voronoi vertex v of V (A) inside CH(Θ)
defines a ball Bv = B(v,A) which we add to the full
foam of A FA

f .

Case 4. In this case, m′ ∈ CH(Θ). Suppose, for
a contradiction, that m′ is a vertex of CH(Θ). This
vertex cannot be a or opp(a) because we reached it by

following the direction
−−−−→
(a′,m) from a′. Any other point

in Θ is outside of V (A), and so is this vertex. But
then we would have hit the boundary of V (A) before

hitting this vertex when following the ray
−−−−→
(a′,m) from

a′. Therefore, m′ lies on an edge of CH(Θ) (Case 5) or
on the interior of some triangle of CH(Θ) (Case 6).

Case 5. In this case, point m′ ∈ V (A) lies on an
edge e of CH(Θ). In case e is (a, opp(a)), then Bm′ =
B(m′, A) is contained in Ba = B(a,A) and Bopp(a) =
B(opp(a), A) and these balls have already been added
to FA

f . Suppose edge e is (a, b) or (opp(a), b) for some
point b ∈ Θ outside V (A). Then V (A) intersects (a, b)
at some point x. By Lemma 3, either Bm′ ⊂ Ba ∪ Bx

or Bm′ ⊂ Bopp(a) ∪ Bx, where Bx = B(x,A). In this
case, we add Bx and either Ba or Bopp(a) to FA

f . Now
suppose edge e is (b, c), which is intersected by V (A),
for some pair of points b, c ∈ Θ outside of V (A). In

this case there are two points v1 and v2 on (b, c) that
are the intersections of V (A) with (b, c), such that m′ ∈
(v1, v2). If Bv1 = B(v1, A) and Bv2 = B(v2, A), then
Bm′ ⊂ Bv1 ∪Bv2 . We add Bv1 and Bv2

to FA
f .

Case 6. In this case, point m′ ∈ V (A) lies on the
interior of a triangle t of CH(Θ). At least one vertex
of triangle t is a or opp(a). Suppose it is a. Then by

following direction
−−−−→
(a,m′), we will hit either (6-1) an

edge of t at point m′′, or (6-2) the boundary of V (A)
at point m′′. Ball Bm′ = B(m′, A) is contained in Ba =
B(a,A) and Bm′′ = B(m′′, A). In case 6-1, we proceed
to Case 5 for point m′′ (recalling that Ba is already in
FA

f ). In case 6-2, if m′′ is on an edge or vertex of V (A)

and we add Bm′′ to FA
f (recalling that Ba is already in

FA
f ). Otherwise, if m′′ is on a face of V (A), then the

intersection of this face and t is a line segment (v1, v2),
where v1 and v2 are either on a Voronoi edge or vertex,
or on an edge of t. If we define Bv1 = B(v1, A) and
Bv2 = B(v2, A), then Bm′ ⊂ Bv1 ∪Bv2 . In this case, we
add Bv1

and Bv2 to FA
f (recalling that Ba is already in

FA
f ).
In this argument, for a medial point m in

CH(Θ)|V (A), we have added balls to FA
f passing

through A centred at the following types of points q:

• Type 1: q ∈ (a, opp(a))

• Type 2: q is a vertex of V (A) inside or on CH(Θ)

• Type 3: q is an intersection of an edge of V (A)
with CH(Θ)

• Type 4: q is an intersection of a face of V (A) with
edges of CH(Θ).

By the argument above, which uses multiple invo-
cations of Lemma 3 to create a set of spheres that
contain Bm = B(m,A) for an arbitrarily positioned
m ∈ CH(Θ)|V (A), it follows that Bm ⊂ FA

f . Starting
with an arbitrary point m ∈ V (A), we can construct
the full foam of A by taking the union of the four types
of balls described above.

The union of the full foams of each boundary point
P ∈ B gives the full foam: Ff = {

⋃
FP

f |P ∈ B}. Recall
that the empty foam is Fe = {

⋃
Bp|p ∈ Θ \ B}, where

Bp = B(p, P ), and P ∈ B is the nearest boundary point
to p. The region Fe does not contain any points in B.

We have shown the following lemma:

Lemma 4 Suppose that DecideMA(B, S,Θ) returned
‘Undetermined’. Let B be the set of nearest boundary
points to Φ and let Θ = Φ

⋃
{opp(φi)|φi ∈ Φ}. If there

are exactly |Φ| distinct points in B, then for any medial
point m ∈ CH(Θ), its nearest boundary points lie in
Ff\Fe.

Observe that when computing the full foam, we need
only consider the vertices of VD(B) inside or on CH(Θ),
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the intersections of edges of VD(B) with CH(Θ), and the
intersection of faces of VD(B) with edges of CH(Θ).

We can easily compute all the potential nearest
boundary points to a medial point m in CH(Θ) by find-
ing the intersection of the boundary B with all the balls
of the full foam of type 1-4. The quality of the approx-
imation can be measured as the maximum distance be-
tween pairs of boundary points to missed medial points
in CH(Θ), which is the maximum of the maximum dis-
tance between pairs of points in FA

f for all A ∈ B.

5 Conclusions and Future Work

We have considered algorithms, based on the analysis
of the gradient of the Euclidean distance transform on
a sphere, that compute points within a user-chosen dis-
tance from the medial axis of an arbitrary 3D solid.
Our experimental results on complex polyhedral inputs
demonstrate that such an analysis of the∇D vector field
has a clear practical utility for the approximation of the
medial axis. The contribution of this article has been
to initiate the study of the quality of the approximation
offered by such algorithms by establishing properties of
the nearest boundary points to those medial points that
are not detected. Much remains to be done in order to
understand what theoretical guarantees can be offered
by a method that studies a finite set of ∇D vectors in
a fixed-radius spherical region in order to decide if this
region is intersected by the medial axis in 3D and higher
dimensions. Below we list several open problems. Me-
dial point quality may be measured using either object
angle, radius, or distance from the medial point to the
query region.

1. Show that if DecideMA(B, S,Φ) returns ‘Unde-
termined’, the quality of medial points present in
sphere S decreases as the density of Φ increases.

2. Suppose that DecideMA(B, S,Φ) returns ‘Unde-
termined’. For each sphere in Ff , we add its centre
to the set of query points Φ to create a set of query
points Φ′. Next, execute DecideMA(B, S,Φ′). By
carrying out this operation repeatedly, what can be
said about the quality of the missed medial points
as more iterations are considered?

3. Design other rules based on the analysis of a fi-
nite number of nearest boundary points to query
points on a sphere that enable detection of medial
points inside the sphere, such that the quality of
the missed medial points can be shown to decrease
by increasing the density of query points used, for
a fixed-size query region S.
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