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Rigid components in fixed-lattice and cone frameworks∗
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Abstract

We study the fundamental algorithmic rigidity problems
for generic frameworks periodic with respect to a fixed
lattice or a finite-order rotation in the plane. For fixed-
lattice frameworks we give an O(n2) algorithm for de-
ciding generic rigidity and an O(n3) algorithm for com-
puting rigid components. If the order of rotation is part
of the input, we give an O(n4) algorithm for deciding
rigidity; in the case where the rotation’s order is 3, a
more specialized algorithm solves all the fundamental
algorithmic rigidity problems in O(n2) time.

1 Introduction

The geometric setting for this paper involves two varia-
tions on the well-studied planar bar-joint rigidity model:
fixed-lattice periodic frameworks and cone frameworks.
A fixed-lattice periodic framework is an infinite struc-
ture, periodic with respect to a lattice, where the al-
lowed continuous motions preserve the lengths and con-
nectivity of the bars as well as the periodicity with re-
spect to a fixed lattice. See Figure 1(a). A cone frame-
work is also made of fixed-length bars connected by uni-
versal joints, but it is finite and symmetric with respect
to a finite order rotation; the allowed continuous mo-
tions preserve the bars’ lengths and connectivity and
symmetry with respect to a fixed rotation center. Cone
frameworks get their name from the fact that the quo-
tient of the plane by a finite order rotation is a flat cone
with opening angle 2π/k and the quotient framework,
embedded in the cone with geodesic “bars”, captures
all the geometric information [13]. Figure 2(a) shows
an example.

A fixed-lattice framework is rigid if the only allowed
motions are translations and flexible otherwise. A cone-
framework is rigid if the only allowed motions are isome-
tries of the cone, which is just rotation around the cone
point, and flexible otherwise. A framework is minimally
rigid if it is rigid, but ceases to be so if any of the bars
are removed.
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Generic rigidity The combinatorial model for the
fixed-lattice and cone frameworks introduced above is
given by a colored graph (G,γ): G = (V,E) is a finite
directed graph and γ = (γij)ij∈E is an assignment of a
group element γij ∈ Γ (the “color”) to each edge ij for
a group Γ. For fixed-lattice frameworks, the group Γ is
Z2, representing translations; for cone frameworks it is
Z/kZ with k ≥ 2 a natural number. See Figure 1(b)
and Figure 2(b).

The colors can be seen as efficiently encoding a map
ρ from the oriented cycle space of G into Γ; ρ is defined,
in detail, in Section 2. If the image of ρ restricted to
a subgraph G′ contains only the identity element, we
define the Γ-image of ρ to be trivial otherwise it is non-
trivial.
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Figure 1: Periodic frameworks and colored graphs: (a)
part of a periodic framework, with the representation
of the integer lattice Z2 shown in gray and the bars
shown in black; (b) one possibility for the the associated
colored graph with Z2 colors on the edges. (Graphics
from [12].)

In 2009 Elissa Ross announced the following theorem:

Theorem 1 ([12],[15]) A generic fixed-lattice periodic
framework with associated colored graph (G,γ) is min-
imally rigid if and only if: (1) G has n vertices and
2n− 2 edges; (2) all non-empty subgraphs G′ of G with
m′ edges and n′ vertices and trivial Z2-image satisfy
m′ ≤ 2n′− 3; (3) all non-empty subgraphs G′ with non-
trivial Z2-image satisfy m′ ≤ 2n′ − 2.

The colored graphs appearing in the statement of The-
orem 1 are defined to be Ross graphs; if only condi-
tions (2) and (3) are met, (G,γ) is Ross-sparse. Ross
graphs generalize the well-known Laman graphs which
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Figure 2: Cone-Laman graphs: (a) a realization of the
framework on a cone with opening angle 2π/3 (graphic
from Chris Thompson); (b) a Z/3Z-colored graph (edges
without colors have color 0); (c) the developed graph
with Z/3Z-symmetry (dashed edges are lifts of dashed
edges in (b)).

are uncolored, have m = 2n − 3 edges, and satisfy (2).
By Theorem 1 the maximal rigid sub-frameworks of a
generic fixed-lattice framework on a Ross-sparse colored
graph (G,γ) correspond to maximal subgraphs of G
with m′ = 2n′ − 2; we define these to be the rigid com-
ponents of (G,γ).

Malestein and Theran [13] proved a similar statement
for cone frameworks:

Theorem 2 ([13]) A generic cone framework with as-
sociated colored graph (G,γ) is minimally rigid if and
only if: (1) G has n vertices and 2n − 1 edges; (2)
all non-empty subgraphs G′ of G with m′ edges and n′

vertices and trivial Z/kZ-image satisfy m′ ≤ 2n′ − 3;
(3) all non-empty subgraphs G′ with non-trivial Z/kZ-
image satisfy m′ ≤ 2n′ − 1.

The graphs appearing in the statement of Theorem 2
are called cone-Laman graphs. We define cone-Laman-
sparse colored graphs and their rigid components simi-
larly to the analogous definitions for Ross-sparse graphs,
with 2n′ − 1 replacing 2n′ − 2.

Ross and cone-Laman graphs are examples of the “Γ-
graded-sparse” colored graphs introduced in [12, 13].
They are all matroidal families [12, 13], which guar-
antees that greedy algorithms work correctly on them.

Main results In this paper we investigate the algorith-
mic theory of crystallographic rigidity of fixed-lattice
and cone frameworks. Given a colored graph (G,γ),

we are interested in the rigidity properties of an associ-
ated generic framework. Lee and Streinu [9] define three
fundamental algorithmic rigidity questions: Decision
Is the input rigid? ; Extraction Find a maximum sub-
graph of the input corresponding to independent length
constraints; Components Find the maximal rigid sub-
frameworks of a flexible input.

We give algorithms for these problems with running
times shown in the following table

Decision Extraction Components

Fixed-lattice O(n2) O(n3) O(n3)
Cone k 6= 3 O(n4) O(n5) O(n5)
Cone k = 3 O(n2) O(n2) O(n2)

Novelty Previously, the only known efficient combina-
torial algorithms for any of these problems were pointed
out in [12, 13]: the Edmonds Matroid Union algorithm
yields an algorithm with running times O(n4) for Deci-
sion and O(n5) Extraction. Recently, Ross presented
a Decision algorithm for Ross graphs very similar to
ours [15]. A folklore randomized algorithm based on
Gaussian elimination gives an O(n3 polylog(n)) algo-
rithm for Decision and Extraction of most rigidity
problems, but this doesn’t easily generalize to Compo-
nents.

The O(n2) running time of Decision for fixed-lattice
frameworks equals that from the pebble game [3, 8, 9]
for the corresponding problem in finite frameworks. Al-
though there are faster Decision algorithms [5] for fi-
nite frameworks, the pebble game is the standard tool
in the field due to its elegance and ease of implementa-
tion. Our algorithms for cone frameworks with order 3
rotation are a reduction to the pebble games of [3, 8, 9].

The O(n3) running time for Extraction and Com-
ponents in fixed-lattice frameworks is worse by a factor
of O(n) than the pebble games for finite frameworks.
However, it is equal to the O(n3) running time from [9]
for the “redundant rigidity” problem. Computing fun-
damental Laman circuits (definition in Section 2) plays
an important role (though for different reasons) in both
of these algorithms.

Roadmap and key ideas Our main contribution is a
pebble game algorithm for Ross graphs, from which
we can deduce the corresponding results for general
cone-Laman graphs. Intuitively, the algorithmic rigid-
ity problems should be harder for Ross graphs than for
Laman graphs, since the number of edges allowed in a
subgraph depends on whether the Z2-image of the sub-
graph is trivial or not. To derive an efficient algorithm
we use three key ideas (detailed definitions are given in
Section 2):

• The Lee-Streinu-Theran [11] approach of playing
several copies of the pebble game for (k, `)-graphs
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[9] with different parameters to handle different
sparsity counts for different types of subgraphs.

• A new structural characterization of the edge-wise
minimal colored graphs which violate the Ross
counts (Section 3).

• A linear time algorithm for computing the Γ image
of a given subgraph (Section 4).

Our algorithms for general cone-Laman graphs then
use the Ross graph Decision algorithm as a subroutine.
When the order of the rotation is 3, we can reduce the
cone-Laman rigidity questions to Laman graph rigidity
questions directly, resulting in better running times.

Motivation Periodic frameworks, in which the lattice
can flex, arise in the study of zeolites, a class of micro-
porous crystals with a wide variety of industrial appli-
cations, notably in petroleum refining. Because zeolites
exhibit flexibility [16], computing the degrees of freedom
in potential [14, 18] zeolite structures is a well-motivated
algorithmic problem.

Other related work The general subject of periodic
and crystallographic rigidity has seen a lot of progress
recently[4, 12, 13], see [7] for a list of announcements.
Bernd Schulze [17] has studied Laman graphs with
a free Z/3Z action in a different context and Elissa
Ross’s recent thesis studies rigidity of infinite periodic
frameworks.[15].

2 Preliminaries

In this section, we introduce the required background
in colored graphs, hereditary sparsity, and introduce
a data structure for least common ancestor queries in
trees that is an essential tool for us.

Colored graphs and the map ρ A pair (G,γ) is defined
to be a colored graph with Γ a group, G = (V,E) a
finite, directed graph on n vertices and m edges, and
γ = (γij)ij∈E is an assignment of a group element γ ∈ Γ
to each edge.

Let (G,γ) be a colored graph, and let C be a cycle in
G with a fixed traversal order. We define ρ(C) to be

ρ(C) =
∑
ij∈C

ij traversed
forwards

γij −
∑
ij∈C

ij traversed
backwards

γij

Since Γ is always abelian in this paper, we need not be
concerned with the particular order of summation, and
since we are interested in whether ρ(C) is trivial or not,
we are not concerned with sign. For a subgraph G′ of
G, we define ρ(G′) to be trivial if its image on cycles

spanned by G′ contains only the identity and non-trivial
otherwise. We need the following fact about ρ.

Lemma 3 ([12, Lemma 2.2]) Let (G,γ) be a colored
graph. Then ρ(G) is trivial if and only if, for any span-
ning forest T of G, ρ is trivial on every fundamental
cycle induced by T .

(k, `)-sparsity and pebble games The hereditary spar-
sity counts defining Ross and cone-Laman graphs gener-
alize to (k, `)-sparse graphs which satisfy m′ ≤ kn′ − `
for all subgraphs; if in addition the total number of
edges is m = kn − `, the graph is a (k, `)-graph. We
also need the notion of a (k, `)-circuit, which is an edge-
minimal graph that is not (k, `)-sparse; these are always
(k, `− 1)-graphs [9]. If G is any graph, a (k, `)-basis of
G is a maximal subgraph that is (k, `)-sparse; if G′ is a
(k, `)-basis of G and ij ∈ E(G)−E(G′), the fundamen-
tal (k, `)-circuit of ij with respect to G′ is the unique
(k, `)-circuit in G′ + ij. See [9] for a detailed develop-
ment of this theory. As is standard in the field, we use
“(2, 3)-” and “Laman” interchangeably.

Although (k, `)-sparsity is defined by exponentially
many inequalities, it can be checked in quadratic time
using the pebble game [9], an incremental approach that
builds a (k, `)-sparse graph G one edge at a time. Here,
we will use the pebble game as a “black box” to: (1)
Check if an edge ij is in the span of any (k, `)-component
of G in O(1) time [9, 10]; (2) Assuming that G plus a
new edge ij is (k, `)-sparse, add the edge ij to G and
update the components in amortized O(n2) time [9];
(3) Compute the fundamental circuit with respect to a
given (k, `)-sparse graph G in O(n) time [9].

Least common ancestors in trees Let T be a rooted
tree with root r and let i and j be any vertices in T .
The least common ancestor (shortly, LCA) of i and j
is defined to be the vertex where the (unique, since T
is a tree) paths from i to r and j to r first converge.
If either i or j is r, then this is just r. A fundamental
result of Harel and Tarjan [6] is that LCA queries can
be answered in O(1) time after O(n) preprocessing.

3 Combinatorial lemmas

In this section we prove structural properties of Ross
and cone-Laman graphs that are required by our algo-
rithms.

Ross graphs Let (G,γ) be a colored graph and sup-
pose that G is a (2, 2)-graph. We can verify that (G,γ)
is Ross by checking the Z2-images of a relatively small
set of subgraphs.

Lemma 4 ([2]) Let (G,γ) be a colored graph and sup-
pose that G is a (2, 2)-graph. Then (G,γ) is a Ross
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graph if and only if for any Laman basis L of G, the
fundamental Laman circuit with respect to L of every
edge ij ∈ E − E(L) has non-trivial Z2-image.

Figure 3 shows two examples. The point is that we can
pick any Laman basis L of G. The main idea is that
G being a (2, 2)-graph forces all Laman circuits to be
edge-disjoint, from which we can deduce all of them are
fundamental Laman circuits of every Laman basis.

(1,0)

(a)

(1,0)

(b)

Figure 3: Examples of Ross and non-Ross graphs (edges
without colors have color (0, 0)): (a) a Ross graph; the
underlying graph is itself a Laman circuit; (b) the un-
derlying graph is a (2, 2)-graph, but the uncolored K4

subgraph has trivial image, so this is not a Ross graph.
Note that K4 is a Laman circuit, illustrating Lemma 4

Cone-Laman graphs Because cone-Laman graphs
have an underlying (2, 1)-graph, the statement of
Lemma 4, with (2, 1)- replacing (2, 2)- does not hold for
cone-Laman graphs. The analogous statement, proven
in the full version is:

Lemma 5 ([2]) Let (G,γ) be a colored graph. Then
(G,γ) is a cone-Laman graph if and only if: (1) G
is a (2, 1)-graph; (2) for any (2, 2)-basis R of G, the
fundamental (2, 2)-circuit G′ with respect to R of ij ∈
E(G)−E(R) becomes a Ross graph after removing any
edge from G′; (3) for any Laman-basis L of G, the fun-
damental Laman-circuits with respect to L have non-
trivial Γ-image.

Order three rotations In the special case where the
group Γ = Z/3Z, which corresponds to a cone with
opening angle 2π/3, we can give a simpler characteri-
zation of cone-Laman graphs in terms of their develop-
ment. The development G̃ is defined by the following
construction: G̃ has three copies of each vertex i: i0, i1
and i2; a directed edge ij with color γ then generates
three undirected edges ikjk+γ (addition is modulo 3).
See Figure 2(c)) for an example. The development has
a free Z/3Z-action; a subgraph of G̃ is defined to be
symmetric if it is fixed by this action.

Lemma 6 ([2]) Let (G,γ) be a colored graph with Γ =
Z/3Z. Then (G,γ) is a cone-Laman graph if and only

if its development G̃ is a Laman graph. Moreover, the
rigid components of (G,γ) correspond to the symmetric
rigid components of G̃.

4 Computing the Γ-image of ρ

We now focus on the problem of deciding whether the
Γ-image of the map ρ, defined in Section 2, is trivial
on a colored graph (G,γ). The case in which G is not
connected follows easily by considering connected com-
ponents one at a time, so we assume from now on that
G is connected. Let (G,γ) be a colored graph and T be
a spanning tree of G with root r. For a vertex i, there
is a unique path Pi in T from r to i. We define σri to
be

σri =
∑
jk∈Pi

jk traversed forwards

γjk −
∑
jk∈Pi

jk traversed backwards

γjk

The notation σri extends in a natural way: for a a vertex
j on Pi, we define σij to be σri−σrj ; if σji is defined, we
define σij = −σji. The key observation is the following
lemma:

Lemma 7 Let (G,γ) be a connected colored graph, let
T be a rooted spanning tree of G, let ij be an edge of
G not in T , and let a be the least common ancestor of
i and j. Then, if C is the fundamental cycle of ij with
respect to T , ρ(C) = σai + γij − σja.

Proof. Traversing the fundamental cycle of ij so that
ij is crossed from i to j means: going from i to j, from
j to the LCA a of i and j towards the root, and then
from a to i away from the root. �

We now show how to compute whether the Γ-image
of a colored graph is trivial in linear time. The idea used
here is closely related to a folklore O(n2) algorithm for
all-pairs-shortest paths in trees.1

Lemma 8 Let (G,γ) be a connected colored graph with
n vertices and m edges. There is an O(n+m) time algo-
rithm to decide whether the Γ-image of ρ(G) is trivial.

The rest of this section gives the proof of Lemma 8. We
first present the algorithm.
Input: A colored graph (G,γ)
Question: Is ρ(G) trivial?
Method:

• Pick a spanning tree T of G and root it.

• Compute σri for each vertex i of G.

• For each edge ij not in T , compute the image of its
fundamental cycle in T .

• Say ‘yes’ if any of these images are not the identity
and ‘no’ otherwise.

1We thank David Eppstein for clarifying the tree APSP trick’s
origins on MathOverflow.
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Correctness This is an immediate consequence of
Lemma 3, since the algorithm checks all the fundamen-
tal cycles with respect to a spanning tree.

Running time Finding the spanning tree with BFS is
O(m) time, and once the tree is computed, the σri can
be computed with a single pass over it in O(n) time.
Lemma 7 says that the image of any fundamental cycle
with respect to T can be computed in O(1) time once
the LCA of the endpoints of the non-tree edge is known.
Using the Harel-Tarjan data structure, the total cost of
LCA queries is O(n+m), and the running time follows.

The pebble game for Ross graphs We have all the
pieces in place to describe our algorithm for the rigidity
problems in Ross graphs.

Algorithm: Rigid components in Ross graphs
Input: A colored graph (G,γ) with n vertices and m
edges.
Output: The rigid components of (G,γ).
Method: We will play the pebble game for (2, 3)-sparse
graphs and the pebble game for (2, 2)-sparse graphs in
parallel. To start, we initialize each of these separately,
including data structures for maintaining the (2, 2)- and
(2, 3)-components.

Then, for each colored edge ij ∈ E:

(A) If ij is in the span of a (2, 2)-component in the
(2, 2)-sparse graph we are maintaining, we discard
ij and proceed to the next edge.

(B) If ij is not in the span of any (2, 3)-component, we
add ij to both the (2, 2)-sparse and (2, 3)-sparse
graphs we are building, and update the components
of each.

(C) Otherwise, we use the (2, 3)-pebble game to identify
the smallest (2, 3)-block G′ spanning ij. We add ij
to this subgraph G′ and compute its Z2-image. If
this is trivial, we discard ij and proceed to the next
edge.

(D) If the image of G′ was non-trivial, add ij to the
(2, 2)-sparse graph we are maintaining and update
its rigid components.

The output is the (2,2)-components in the (2, 2)-
sparse graph we built.

Correctness By definition, the rigid components of a
Ross graph are its (2, 2)-components. Step (A) ensures
that we maintain a (2, 2)-sparse graph; steps (B) and
(C), by Lemma 4 imply that when new (2, 2)-blocks are
formed all of them have non-trivial Z2-image, which is
what is required for Ross-sparsity. Step (D) ensures
that the rigid components are updated at every step.

The matroidal property implies that a greedy algorithm
is correct.

Running time By [9, 10], steps (A), (B), and (D) re-
quire O(n2) time over the entire run of the algorithm
(the analysis of the time taken to update components
is amortized). Step (C), by [9] and Lemma 7 requires
O(n) time. Since Ω(m) iterations may enter step (C),
this becomes the bottleneck, resulting in an O(nm) run-
ning time, which is O(n3).

Modifications for other rigidity problems We have
presented and analyzed an algorithm for computing the
rigid components in Ross graphs. Minor modifications
give solutions to the Decision and Extraction prob-
lems. For Extraction, we just return the (2, 2)-sparse
graph we built; the running time remains O(n3). For
Decision, we simply stop and say ‘no’ if any edge is
ever discarded. Since we process at most O(n) edges,
the running time becomes O(n2).

5 Pebble games for cone-Laman graphs

We now describe our algorithms for cone-Laman graphs.

Order-three rotations We start with the special case
when the group Γ = Z/3Z. In this case, the follow-
ing algorithm’s correctness is immediate from Lemma
6. The running time follows from [3, 9, 10] and the fact
that the development can be computed in linear time.

Input: A colored graph (G,γ) with n vertices and
m edges.
Output: The rigid components of (G,γ).
Method:

(A) Compute the development G̃ of (G,γ).

(B) Use the (2, 3)-pebble game to compute the rigid
components of G̃.

(C) Return the subgraphs of G corresponding to the
symmetric rigid components in G̃.

General cone-Laman graphs For colored graphs with
Γ = Z/kZ, we don’t have an analogue of Lemma 6,
and the development may not be polynomial size. How-
ever, we can modify our pebble game for Ross graphs to
compute the rigid components. Here is the algorithm:
Input: A colored graph (G,γ) with n vertices and m
edges, and an integer k.
Output: The rigid components of (G,γ).
Method: We initialize a (2, 1)-pebble game, a (2, 2)-
pebble game, and a (2, 3)-pebble game. Then, for each
edge ij ∈ E(G):
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(A) If ij is in the span of a (2, 1)-component in the
(2, 1)-sparse graph we are maintaining, we discard
ij and proceed to the next edge.

(B) If ij is not in the span of any (2, 3)-component, we
add ij to all three sparse graphs we are building,
update the components of each, and proceed to the
next edge.

(C) If ij is not in the span of any (2, 2)-component,
we check that its fundamental Laman circuit in the
(2, 3)-sparse graph has non-trivial Z/kZ-image. If
not, discard ij. Otherwise, add ij to the (2, 1)- and
(2, 2)-sparse graphs and update components.

(D) Otherwise ij is not in the span of any (2, 1)-
component. We find the minimal (2, 2)-block G′

spanning ij and check if G′ + ij becomes a Ross
graph after removing any edge. If so, add ij to the
(2, 1)-graph we are building. Otherwise discard ij.

The output is the (2, 1)-components in the (2, 1)-
sparse graph we built.

Analysis The proof of correctness follows from Lemma
5 and an argument similar to the one used to show that
the pebble game for Ross graphs is correct. Each loop
iteration takes O(n3) time, from which the claimed run-
ning times follow.

6 Conclusions and remarks

We studied the three main algorithmic rigidity ques-
tions for generic fixed-lattice periodic frameworks and
cone frameworks. We gave algorithms based on the peb-
ble game for each of them. Along the way we introduced
several new ideas: a linear time algorithm for comput-
ing the Γ-image of a colored graph, a characterization
of Ross graphs in terms of Laman circuits, and a char-
acterization of cone-Laman graphs in terms of the de-
velopment for k = 3 and Ross graphs for general k.

Implementation issues The pebble game has become
the standard algorithm in the rigidity modeling com-
munity because of its elegance, ease of implementation,
and reasonable implicit constants. The original data
structure of Harel and Tarjan [6], unfortunately, is too
complicated to be of much use except as a theoretical
tool. More recent work of Bender and Farach-Colton
[1] gives a vastly simpler data structure for O(1)-time
LCA that is not much more complicated than the union
pair-find data structure of [10] used in the pebble game.
This means that the algorithm presented here is imple-
mentable as well.
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