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Abstract

In this paper, we study the weak point matching prob-
lem for a given set of n points and a class of equilateral
triangles. The problem is to find the maximum car-
dinality matching of the points using equilateral trian-
gles such that each triangle contains exactly two points
and each point lies at most in one triangle. Under the
non-degeneracy assumption, we present an O(n3/2) time
algorithm using the TD-Delaunay graph and a graph
matching algorithm. Also, we show that the lower
bound for the number of matched points is b2n/3c which
is optimal in the worst case.

1 Introduction

The point matching problem is a challenging problem
in computational geometry and graph theory and has
many applications in geometric shape matchings and
computational biology [3]. The problem of point match-
ing with planar geometric objects, recently studied in
[1], is a special variant of point matching problems.
Given a set P of points in the plane and a class C of
2D geometric objects, the problem is to find a set of
C-type objects, called C-matching of P , in which each
object contains exactly two points of P and each point
lies in at most one object. The problem is a general-
ization of geometric graph matching where the objects
are segments. Alternatively, what we refer to as objects
can be circles, squares or rectangles as well.

Assume that the number of points is even. A C-
matching is called perfect if all points in P are covered,
and it is strong if the matched geometric C-objects are
non-overlapping. In addition, the matching is called
weak if we do not know whether it is strong [4]. Álbrego
et al. studied properties of C-matching problem for two
classes of circles and isothetic squares in perfect and
strong matching [1]. Assuming the class of objects to
be circles, they proved some bounds for the cardinal-
ity of matching in strong and/or perfect matching. The
weak perfect matching problem for line segments was
studied by Rendl and Woeginger [12]. They proposed
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an O(n log n) time algorithm for orthogonal segments,
where n is the number of points in P . They proved
that the problem is NP-complete if the segments are
not allowed to cross. Aloupis et al. investigated match-
ing problems for non-crossing objects [3]. They showed
that the problem is NP-complete for lines and line seg-
ments in general, but polynomial-time when segments
form a convex polygon. Also, a bichromatic version of
the problem and a non-intersecting constraint have been
studied for strong matching when the objects are seg-
ments by Dumitrescu and Steiger [8] and Kaneko and
Kano [9], respectively.
Álbrego et al. studied the matching problem for cir-

cles and squares [1], [2]. Under the non-degeneracy as-
sumption, they showed that there always exists a weak
perfect matching for the class of axis-aligned square ob-
jects, and proposed a 2dn/5e bound for the cardinal-
ity of matching for the strong one. They presented a
2d(n − 1)/8e bound for circles, as well. The classes
of rectangles and squares have been studied by Bereg
et al. [4]. Without the general position assumption,
they proposed an O(n log n) optimal time algorithm
for squares in the weak matching realization and an
O(n2 log n) time algorithm for the strong one. Also,
they showed that a weak rectangle matching of max-
imum cardinality can be computed in O(βn1.5) time,
where β is the minimum of the number of different x-
coordinates and the number of different y-coordinates
in P . In addition, they proved that there exists an opti-
mal worst case b2n/3c cardinality of matching for axis-
aligned rectangles in the strong matching and proved
that the problem of determining whether a given set of
points has a perfect strong matching is NP-hard for the
class of squares.

In this paper, we study the problem of weak point
matching using equilateral triangles with a horizontal
base which lies below its non-adjacent vertex. We de-
note this problem of Weak Triangle Matching by WTM.
The approach that we present is also applicable for ho-
mothets of any fixed triangle, by applying a shear trans-
formation. To solve the problem, we use a shrinkabil-
ity property [2] and reduce WTM to a graph matching
problem. When two points of P named p and q are
matched in a solution to a matching problem, a C-type
object contains exactly p and q. Thus, the object can be
shrunk such that p and q lie on its boundary. This prop-
erty is called “shrinkability” of geometry object match-
ing. Having this property, we reduce the problem of
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matching with geometric objects to a graph matching
problem. The corresponding graph for the WTM prob-
lem is similar to a Θk-graph which has been used in the
geometric spanner context [11]. Indeed, the graph is a
special form of a 2-spanner, Θ6-graph, introduced by
Bonichon et al. [6] and called half -Θ6-graph [7]. They
proved that the half -Θ6-graph is the same as triangular-
distance Delaunay graph and can be computed in opti-
mal O(n log n) time for a set of n points in the plane.

In the next section, we propose an O(n3/2) time al-
gorithm for finding the maximum-cardinality matching
for the WTM problem. Later in section 3, we will show
that the number of matching points with our proposed
algorithm will at least be b2n/3c points for every given
point set, which is optimal in the worst case.

2 Weak Point Matching With Equilateral Triangles

The problem of matching with geometric objects has
been studied for classes of segments, circles, squares and
rectangles. It would be interesting to study the same for
convex polygons as well. In this paper, we study equi-
lateral triangles. For the class of arbitrary triangles,
the problem will be trivial, because each segment can
be assumed to be a triangle with a height sufficiently
small. We consider the x-axis aligned equilateral tri-
angles. They are equilateral triangles, one of the edges
of which is parallel to the x-axis. We assume that the
triangle is located above this edge.

For both strong and weak versions of the problem,
there are counterexamples that show a perfect triangle
matching does not always exist. But we show in this
section that there is an O(n3/2) time algorithm which
can compute a weak triangle matching of maximum car-
dinality for a set of n points.

For a given set of points P = {p1, p2, . . . , pn}, the
problem of weak triangle matching called WTM is to
find a set of x-axis aligned triangles such that each tri-
angle includes exactly two points of P . Fig. 1 shows
two solutions of the WTM problem for a set of eight
points.

Figure 1: An example of the WTM problem and two
distinct solutions for it (dashed triangles and solid tri-
angles).

Figure 2: The three directions d1, d2 and d3 and the
cones in the covering of a point.

Throughout this paper, we consider three axes d1,
d2 and d3 which have angles of π/6, 5π/6, and 9π/6
with x-axis, respectively. We assume that the points of
the set P are in general position, which as we define
it, means that there are no two points with the same
coordinates in the directions d1, d2 or d3. Also, we
denote the orthogonal projection of a point p onto di by
di(p), for i=1, 2 and 3. For a point p, we partition the
plane into six regular cones with the apex p. see Fig.
2. The three odd cones with their bisectors being d1, d2

and d3 will be denoted A1, A2 and A3 respectively; the
remaining three will be called B1, B2 and B3. We say
that the point q is in the covering of p in the direction
di, if it lies in Ai, for i=1, 2 and 3.

Let T be an axis-aligned equilateral triangle including
p and q. We can shrink T to find a smaller such triangle
so that p and q lie on its boundary. In addition, for the
smallest covering x-axis aligned equilateral triangle at
least p or q lies on one of its vertices. We denote such
a triangle by T (p, q). Without loss of generality, we
assume that each triangle which contributes to WTM
has a point on one of its vertices and the other point
is on its boundary. Also, for two points p and q in P ,
we say that T (p, q) is a candidate triangle for the weak
triangle matching problem if it contains no other points
of P . Letting p be a vertex of a candidate triangle,
the other point should be in the covering of p. With
regard to the general position assumption, we have the
following observation.

Observation 1 Any point p in P can be a vertex of at
most three candidate triangles.

To solve the WTM problem, we define a geometric
graph and reduce the problem to a graph matching
problem. To this end, we construct the geometric graph
G(P ) for a point set P . Vertices of G(P ) are exactly the
point set P , and there is an edge between two vertices p
and q if and only if T (p, q) is a candidate triangle. Fig.
3 displays a point set and its corresponding geometric
graph.

To compute the geometric graph, G(P ), we can use
the algorithm of Θk-graphs for k=6 [11]. This type
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Figure 3: The geometric graph in the WTM problem
for a set of points.

of graphs are the linear approximation of complete Eu-
clidean graphs. Chew showed that the Delaunay tri-
angulation using triangle distance function (called TD-
Delaunay graph) is a 2-spanner graph [7]. To construct
the TD-Delaunay graph it is sufficient to replace the
empty equilateral triangle with the circle in the empty
circle test in constructing the standard Euclidean De-
launay triangulation. Also, it is proved that the size of
the TD-Delaunay graph is linear and can be computed
using the sweep line approach in O(n log n) time for a
set of n points. The final result in this context was pre-
sented by Bonichon et al. [6]. They introduced a spe-
cific subgraph of Θ6-graph, called the half -Θ6-graph,
and proved that it is equal to the TD-Delaunay graph.
Based on the mentioned concepts, we can conclude the
following result.

Proposition 1 For a given set P of n points in the
plane, the geometric graph G(P ) is a connected graph
with O(n) edges and can be computed in O(n log n) time.

Since an edge in G(P ) corresponds with a candidate
triangle in P , solving the problem in P is equal to
finding the maximum graph matching in G(P ). The
maximum graph matching for a graph G = (V,E)
can be solved using Micali and Vazirani’s algorithm in
O(|V |

√
|E|) time [10]. Taking into account the linear

size of G(P ), we conclude this section with the following
theorem:

Theorem 2 For a set of n points in the plane, the
maximum cardinality weak point matching with x-axis
aligned equilateral triangles can be solved in O(n3/2)
time and O(n) space.

3 Lower Bound for the number of matched points
for the WTM

In the previous section, we showed that there is an algo-
rithm that finds a maximum cardinality matching for a
given point set. In this section, we show that the weak
triangle matching for the points in general position al-
ways covers at least b2n/3c points. If the points are not
in general position, the worst case is the one in which
each point has the same coordinate as another point, in
direction d1, d2 or d3 as illustrated in Fig. 4.

Figure 4: An example for a set of points which are not
in general position.

In this case, only the extreme points can be matched.
Without the general position assumption, the lower
bound for the number of the points which can be
matched in an arbitrary point set, P , with the cardi-
nality of n is O(

√
n). If we assume that the points

are in general position, the problem of finding the lower
bound for the number of matched points with WTM be-
comes interesting. The following lemmas present some
properties of the corresponding graph to find a lower
bound.

Lemma 3 For each two vertices p and q in G(P ), there
are vertices r1, r2, . . . , rk (k ≥ 0) inside T (p, q) such
that, the path pr1r2 . . . rkq is between p and q and each
ri, ( 1 ≤ i ≤ k) lies in T (u, v) where u and v are the
adjacent vertices of ri on the path pr1r2 . . . rkq.

Proof. If T (p, q) is a candidate triangle, there is an
edge between p and q. So, the lemma holds for k=0.
Otherwise, there is a vertex inside T (p, q), e.g. r1, which
T (p, r1) is a candidate triangle and there is an edge be-
tween p and r1. For the vertices q and r1, if T (r1, q) is a
candidate triangle, there is an edge between them. So,
the lemma holds for k=1. Otherwise, similarly there is a
vertex inside T (r1, q), e.g. r2, which T (r1, r2) is a can-
didate triangle and there is a path between r2 and q.
Consequently, the path pr1r2 . . . rkq lies inside T (p, q)
and each ri, (1 ≤ i ≤ k) lies in T (u, v), where u and v
are the adjacent vertices of ri on the path. �

Lemma 4 For an arbitrary point, q, consider the six
mentioned cones, Ai and Bi, for i=1, 2, 3. If there are
two points, p1 and p2, such that q lies inside T (p1, p2),
then one of them, e.g. p1, cannot be in the covering of q
and the other point, p2, cannot be in the cone containing
p1 and its two adjacent cones.

Proof. If both two vertices, p1 and p2, are in the cov-
ering of q, then q cannot be inside T (p1, p2), because
there exists a line that separates q and T (p1, p2). For
example, if p1 lies in A1 and p2 lies in A2, T (p1, p2) com-
pletely lies above the horizontal line that passes through
q. So, suppose that p1 is not in the covering of q and
lies in one of Bi cones, e.g. B1. If q lies inside T (p1, p2),
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then d3(p2)> d3(q) which implies that p2 cannot be in
B1 or in its adjacent cones, A1 and A2. �

Let C(q) be the number of connected components
which are created by removing a vertex q from G(P ).
We will have the following lemmas.

Lemma 5 For any vertex q in the corresponding graph
of the point set P , G(P ), C(q) ≤ 3.

Proof. Consider the point q and its six mentioned
cones. For contradiction, assume that there are at least
four components after removing q, so there is a vertex in
each component, e.g. p1, p2, p3 and p4, which connect
to q by an edge. See Fig. 5. According to lemma 4,
for two points pi and pj , for 1 ≤ i, j ≤ 4, if q is inside
T (pi, pj), there is at least one of the cones, A1, A2 or A3

between pi and pj , otherwise, there is a path between
them which does not pass through q. In this case, there
are four vertices lying in 6 regions. So, there are at
least two vertices which are in the same or two adjacent
cones. This means that by removing q, there is a path
between at least two vertices of pi which does not con-
tain q. It implies that these two vertices which are p1

and p4 in Fig. 5, cannot be in two disjoint components,
after removing q, which would be a contradiction. �

Figure 5: The vertices adjacent to q cannot be in more
than three components.

Lemma 6 Suppose that the vertices p1, p2, . . . , pi−1

have been removed from G(P ), and G′(P ) be the re-
sulted graph. If by removing a vertex, e.g. pi from
G′(P ), more than two connected components are added,
then there would be two vertices r and s connected to
pi, such that T (r, s) contains some vertex like q where
q ∈ {p1, p2, . . . , pi−1} and C(q) < 3 but T (r, s) does not
contain pi.

Proof. According to lemma 5, C(pi) ≤ 3. So, each two
vertices adjacent to pi which are in two disjoint compo-
nents by removing pi from G(P ), the vertex pi is inside
the triangle of them. So, it is expected that removing
pi from G′(P ) adds two connected components. Unless,

there are two vertices adjacent pi like r and s such that
T (r, s) does not contain pi, furthermore, by removing pi

from G(P ), the vertices r and s are in the same com-
ponent, while by removing p1, p2, . . . , pi−1, pi, vertices
r and s are in two disjoint components. See Fig. 6.
It means that in G′(P ) there is no edge between r and
s. According to lemma 3, there is a path with length
of more than one between r and s, and the vertices on
the path are inside T (r, s). This path is disjoint from
spir, because r and s are in two disjoint connected com-
ponents. There should be a vertex on the path like q,
which has been deleted before. According to lemma 3,
q is inside T (u, v) where u and v are adjacent vertices
of q on the path between r and s. The path between
u and v passing through pi, implies that the number of
created components by removing q from G(P ) cannot
be three. So, C(q) < 3. �

Figure 6: The adjacent vertices of pi in lemma 6.

Suppose that we want to remove the vertices of a set
from the corresponding graph, one-by-one. Note that,
the sequence created by the number of added connected
components by removing each vertex, varies with the or-
der of removing vertices. For example, in Fig. 3, there
are two possible orders for removing the two points, p1

and p2. For these two removing orders, p1, p2 and p2, p1,
the sequences of the number of the added connected
components are 1, 1 and 0, 2, respectively. It is clear
that the total number of created connected components
is independent of the removing order. The lemmas 5 and
6 show that by removing each vertex, at most two con-
nected components are added, unless there is a vertex
which has been removed before and the number of con-
nected components created by removing it from G(P )
is less than three. We are going to show that there
is a vertex removing order, which guarantees at most
two connected components are added by removing each
vertex. The following lemma concludes this discussion.

Lemma 7 By removing the vertices of the set S =
{p1, p2, . . . , pk} from G(P ), at most 2k + 1 connected
components are created.

Proof. As we discussed before this lemma, different
orders of removing vertices of S generate different se-
quences of the number of added components. However,
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the total number of created components is the same.
To prove the lemma, we show that there is an order for
removing the vertices of S such that at most two con-
nected components are added by removing each vertex.
If such an order exits, the number of connected compo-
nents by removing k vertices, will be at most 2k + 1.
Let Pr(pi) be the priority of removing pi. For any pi

and pj in S, if Pr(pi) > Pr(pj), we remove pi before
pj . For each two vertices of G(P ), pi, pj , if pi has two
adjacent vertices like r and s such that T (r, s) contains
pi, but not pj , let Pr(pi) > Pr(pj). See Fig. 7. Lemma
6 shows that if we follow this priority, in each step, at
most two connected components will be added. A prob-
lem occurs when there is some vertex like pt such that
Pr(pt) > Pr(pi) and Pr(pj) > Pr(pt). It means that
there is a sequence of vertices which have the cycle of
priority. For solving this problem, consider all vertices
of S which lie on such priority cycles. First, we remove
the vertices which lie on more than one priority cycles.
For example in Fig. 7, these vertices are pt and pt′ . Af-
ter removing such vertices, we arbitrarily remove one of
the vertices on each of the priority cycles which have no
common vertex with any other priority cycles. As these
vertices are on a cycle of the graph, by removing them
no connected components are added. After removing
one of the vertices of the priority cycles, the priority of
the other vertices on the priority circles, will become
explicit. The other vertices of S will have the arbitrary
priority. Since there is an order for removing the ver-
tices of S such that at most two connected components
are added by removing each vertex, the number of con-
nected components created by removing k vertices is at
most 2k + 1. �

Figure 7: The priority of removing pi and pj where
Pr(pi) < Pr(pj) and the priority cycles.

A basic condition for graphs that have a perfect
matching was found by Tutte in 1947. Berge in 1958
observed that it implies a min-max formula for the max-
imum cardinality α(G) of a matching in a graph G,
the Tutte–Berge formula. A connected component of
a graph is called odd if it has an odd number of ver-
tices. Let Co(G) denote the number of odd components
of G. Then, based on Tutte–Berge formula [5], for each

graph G = (V,E),

α(G) = min
S⊂G

(|V (G)|+ |S| − Co(G− S))

Tutte–Berge formula and lemma 7 lead to find a lower
bound for the number of matched points in WTM.

Theorem 8 Maximum cardinality of weak triangle
matching for any set of n points in the plane in gen-
eral position matches at least b2n/3c points.

Proof. Let |S| = kS and G be the corresponding graph
of P . According to lemma 7, Co(G− S) ≤ C(G− S) ≤
2kS + 1. Based on the Tutte–Berge formula
α(G) = min

S⊂G
(|V (G)|+ |S| − Co(G− S)) ≥

min
S⊂G

(n+ kS − 2kS − 1) = min
S⊂G

(n− kS − 1)

We consider two following cases:

• |S| < n/3

M1 = min
S⊂G

(n−kS −1) > n−n/3−1 > 2n/3−1⇒
M1 ≥ 2n/3

• |S| ≥ n/3

Co(G− S) ≤ 2kS + 1⇒ ∀S, ∃FS ≥ 0,

Co(G− S) = 2kS + 1− FS ,

|S|+ Co(G− S) ≤ n⇒ kS + 2kS + 1− FS ≤ n⇒
3kS + 1− FS ≤ n⇒ FS ≥ 3kS + 1− n,

M2 = min
S⊂G

(|V (G)|+ |S| − Co(G− S)) =

min
S⊂G

(n+ kS − (2kS + 1− FS)) =

min
S⊂G

(n− kS − 1 + FS) ≥

min
S⊂G

(n− kS − 1 + 3kS + 1− n) =

min
S⊂G

(2kS) ≥ 2n/3

Therefore,
α(G) = min(M1,M2) ≥ 2n/3 ≥ b2n/3c

�

Fig. 8 depicts a point set P and its corresponding
geometric graph which has n = 3k vertices. As illus-
trated in the figure, the triangles T (ri, si), T (ri, rj) and
T (si, sj), for 1 ≤ i, j ≤ k, are not candidate trian-
gles. Therefore, the candidate triangles are T (ri,mi)
and T (si,mi), for 1 ≤ i ≤ k, and also, T (ri,mi−1),
T (si,mi−1) and T (mi,mi−1), for 2 ≤ i ≤ k. Each edge
has an end point at the central vertices, m1,m2, . . . ,mk.
Clearly, only one of the edges incident to mi can be in
a matching. It shows that the ratio of the points that
can be covered by a maximum cardinality weak triangle
matching is 2/3, so, the proposed lower bound is tight.
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Figure 8: Set of n points which at most b2n/3c can be
matched.

4 Conclusion

The problem of matching points with classes of objects
such as circles, squares and rectangles has been recently
studied in computational geometry and graph theory.
In this paper, we studied the weak point matching for
the class of equilateral triangles as an open problem of
previous studies. We showed that the maximum cardi-
nality of this kind of matching can be computed using a
convex distance function based on equilateral triangles.
In addition, we discussed the lower bound of the size
of weak triangle matching. We proved that for every
point set, at least 2/3 of the points can be matched and
we showed that this lower bound is tight. These results
are also true for homothets of any fixed triangle. How-
ever, the time optimality of the algorithm remains as
an open problem. Another future work is to study the
strong version of the problem.
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