
CCCG 2011, Toronto ON, August 10–12, 2011

On the generation of topological (nk)-configurations

Jürgen Bokowski ∗ Vincent Pilaud ‡

Abstract

An (nk)-configuration is a set of n points and n lines in
the projective plane such that the point – line incidence
graph is k-regular. The configuration is geometric, topo-
logical, or combinatorial depending on whether lines are
considered to be straight lines, pseudolines or just com-
binatorial lines.

We provide an algorithm for generating all combina-
torial (nk)-configurations that admit a topological real-
ization, for given n and k. This is done without enu-
merating first all combinatorial (nk)-configurations.

Among other results, our algorithm enables us to con-
firm, in just one hour with a Java code of the second
author, a satisfiability result of Lars Schewe in [11], ob-
tained after several months of CPU-time.

1 Introduction

An (nk)-configuration (P,L) is a set P of n points and
a set L of n lines such that each point of P is contained
in k lines of L and each line of L contains k points
of P . Two lines of L are allowed to meet in at most
one point of P and two points of P can lie in at most
one common line of L. According to the underlying
incidence structure, we distinguish three different levels
of configurations, in increasing generality:

Geometric configurations: Points and lines are ordinary
points and lines in the real projective plane P.

Topological configurations: Points are ordinary points
in P, but lines are pseudolines, i.e. non-separating
simple closed curves of P.

Combinatorial configurations: Points and lines are just
required to form an abstract incidence structure
(P,L) as described above.

The study of point – line configurations has a long
history in discrete 2-dimensional geometry. We refer
to Branko Grünbaum’s recent monograph [8] for a de-
tailed treatment of the topic. The current challenge is
to determine for which values of n do geometric, topo-
logical, and combinatorial (nk)-configurations exist for
a given k, and to enumerate and classify them.

∗Tech. Univ. Darmstadt, juergen.bokowski@googlemail.com
‡Univ. Paris 7, vincent.pilaud@liafa.jussieu.fr, Research

supported by Spanish MEC grant MTM2008-04699-C03-02.

For k = 3, the existence of (n3)-configurations is well
understood: combinatorial (n3)-configurations exist for
every n ≥ 7, but topological and geometric (n3)-confi-
gurations exist only for every n ≥ 9. For example,
Fano’s combinatorial (73)-configuration cannot be re-
alized as a topological configuration. As further ex-
amples, Pappus’ and Desargues’ theorems form famous
(93)- and (103)-configurations respectively. This de-
scription is still almost complete for k = 4: combina-
torial (n4)-configurations exist iff n ≥ 13, topological
(n4)-configurations exist iff n ≥ 17 [3] and geometric
(n4)-configurations exist iff n ≥ 18 [7, 4], with the pos-
sible exceptions of 19, 22, 23, 26, 37 and 43. For gen-
eral k, the situation is more involved, and the existence
of combinatorial, topological and geometric (nk)-confi-
gurations is not determined in general.

In this paper, we describe an algorithm for generating,
for given n and k, all combinatorial (nk)-configurations
that admit a topological realization, without enumerat-
ing first all combinatorial (nk)-configurations. The al-
gorithm sweeps the projective plane to construct a topo-
logical (nk)-configuration (P,L), but only considers as
relevant the events corresponding to the sweep of points
of P . This strategy enables us to identify along the way
some topological configurations which realize the same
combinatorial configuration, and thus to maintain a rea-
sonable computation space and time.

We developed two different implementations of this
algorithm. The first one was written in Haskell by the
first author to develop the strategy of the enumeration
process. Once the general idea of the algorithm was set-
tled, the second author wrote another implementation
in Java, focusing on the optimization of computation
space and time of the process.

We underline three motivations for this algorithm.
First, the algorithm is interesting in its own right. Be-
fore describing some special methods for constructing
topological configurations, Branko Grünbaum writes in
[8, p. 165] that “the examples of topological configura-
tions presented so far have been ad hoc, obtained es-
sentially through (lots of) trial and error”. Our al-
gorithm can reduce considerably the trial and error
method. Second our algorithm enables us to check and
confirm the previous results obtained in earlier papers,
e.g. for k = 4 and n ≤ 18 in [4, 11]. We can use a sin-
gle method and reduce considerably the computation
time (e.g. the computation of the (184)-configurations



23rd Canadian Conference on Computational Geometry, 2011

1

1

2

12
11
10

9

8
7 6

5

34

13 14

15

16 17 18 4

12

11

10
9

8

56
7

3 2

1514

13
1817

16

1

1

7

17
16

10

4
3
2

8

9
56

18

12

11 15 13
14 6

17
18

10

2
3

4

8

95 7

16

12

11
1413

15

Figure 1: Two rather different (184)-configuration which are combinatorially equivalent.

needed several months of CPU-time in [11], and only
one hour with our Java implementation). Finally, our
algorithm opens new opportunities of research based
on enumeration to answer several open questions on
configurations. Among others: Is there a symmetri-
cal topological (194)-configuration [8, p. 169]? What is
the smallest topological (n5)-configuration? Is there a
geometric (194)-configuration?

Topological configurations are pseudoline arrange-
ments, or rank 3 oriented matroids. We assume the
reader to have some basic knowledge on these topics —
see [2, 1, 9].

2 Preliminaries

What do we need? Our guideline and motivation
in the study of configurations is the question of the
existence of geometric (nk)-configurations. In partic-
ular, it is challenging to determine, for a given k,
which is the first n for which geometric (nk)-configu-
rations exist. For k = 3, Pappus’ configuration is
the first example (with two other combinatorially dis-
tinct (93)-configurations). For k = 4, it was known for
a long time that no combinatorial (n4)-configurations
exist when n ≤ 12. However, the smallest geometric
configuration was unknown until the first author proved
with Lars Schewe that no topological (n4)-configura-
tions exist when n ≤ 16 [4], that the only combinatorial
(174)-configuration which is topologically realizable is
not geometrically realizable [5], and that there exists a
geometric (184)-configuration [5].

The method presented in [5] makes it possible to de-
cide whether a combinatorial configuration is geometri-
cally realizable. The goal of our algorithm is to limit
the research to combinatorial configurations which are
already topologically realizable. In other words, for
given n and k, we want to enumerate all topological
(nk)-configurations under combinatorial equivalence.

Three equivalence relations. There are three distinct
notions of equivalence on topological configurations.

The finest notion is the usual notion of equivalence be-
tween pseudoline arrangements in the projective plane:
two configurations are topologically equivalent if there
is an homeomorphism of their underlying projective
planes that sends one arrangement onto the other.

The coarsest notion is combinatorial equivalence:
two (nk)-configurations are combinatorially equivalent
if they realize the same combinatorial (nk)-configura-
tion.

The intermediate notion is based on the graph of
admissible mutations. Remember that a mutation in
a pseudoline arrangement is a local transformation of
the arrangement where only one pseudoline ` moves,
sweeping a single vertex v of the remaining arrange-
ment. It only changes the position of the crossings of `
with the pseudolines incident to v. If those crossings
are all 2-crossings, the mutation does not perturb the
k-crossings of the arrangement, and thus produces an-
other topological (nk)-configuration. We say that such
a mutation is admissible. Two configurations are mu-
tation equivalent if they belong to the same connected
component of the graph of admissible mutations.

mutation

Figure 2: An admissible mutation.

Obviously, topological equivalence implies mutation
equivalence, which in turn implies combinatorial equiv-
alence. The reciprocal implications are wrong.

Note that the topological equivalence between two
(nk)-configurations can be tested in Θ(n3) time. In-
deed, since the topological configurations are embedded



CCCG 2011, Toronto ON, August 10–12, 2011

on the projective plane, the images of two pseudolines
under an isomorphism of the projective plane determine
the images of all the other pseudolines. Thus, the com-
plexity to compute the topological equivalence classes
among p topological (nk)-configurations is in Θ(p2n3).
Both combinatorial and mutation equivalences are how-
ever much harder to decide computationally.

In order to limit unnecessary computation, we can
use topological (resp. mutation, resp. combinatorial) in-
variants associated to topological configurations. If two
configurations have distinct invariants, they cannot be
equivalent. Reciprocally, if they share the same invari-
ant, it provides us information on the possible isomor-
phism between these two configurations. For example,
the face size vector (the number of faces of each size) is
a topological invariant, and the distribution of the tri-
angles on the pseudolines is a combinatorial invariant
(a triangle of a configuration (P,L) is a triple of points
of P which are pairwise related by pseudolines of L).

As an illustration, the two (184)-configurations de-
picted in Figure 1 are combinatorially equivalent (the
labels on the pseudolines provide a combinatorial iso-
morphism) but not topologically equivalent (the left one
has 22 quadrangles and 2 pentagons, while the right one
has 23 quadrangles). In fact, one can even check that
they are not mutation equivalent.

What do we obtain? Our algorithm can enumerate all
topological (nk)-configurations up to either topological
or combinatorial equivalence. In order to maintain a
reasonable computation space and time, the main idea
is to focus on the relative positions of the points of the
configurations and to ignore at first the relative posi-
tions of the other crossings among the pseudolines. In
other words, to work modulo mutation equivalence.

More precisely, we first enumerate at least one repre-
sentative of each mutation equivalence class of topolog-
ical (nk)-configuration. From these representatives, we
can derive:

1. all topological (nk)-configurations up to topological
equivalence: we explore each connected component
of the mutation graph with our representatives as
starting nodes.

2. all combinatorial (nk)-configurations that are topo-
logically realizable: we reduce the result modulo
combinatorial equivalence.

3 Representation of arrangements

Simple configurations. A topological configuration
(P,L) is simple if no three pseudolines of L meet at a
common point except if it is a point of P . Since any
topological (nk)-configuration can be arbitrarily per-
turbed to become simple, we only consider simple topo-

logical (nk)-configurations. Once we obtain all simple
topological (nk)-configurations, it is usual to obtain all
(non-necessarily simple) topological (nk)-configurations
up to topological equivalence by exploring the mutation
graph, and we do not report on this aspect.

In a simple (nk)-configuration (P,L), there are two
kinds of intersection points among pseudolines of L: the
points of P , which we also call k-crossings, and the other
points, which we call 2-crossings. Each pseudoline of L
contains k k-crossings and n− 1 − k(k− 1) 2-crossings.
In total, a simple (nk)-configuration has n k-crossings
and

(
n
2

)
− n(

(
k
2

)
− 1) 2-crossings.

Segment length distributions. A segment of a topo-
logical configuration (P,L) is the portion of a pseudo-
line of L located between two consecutive points of P .
If (P,L) is simple, a segment contains no k-crossing ex-
cept its endpoints, but may contain some 2-crossings.
The length of a segment is the number of 2-crossings it
contains.

The lengths of the segments of a pseudoline of L form
a k-partition of n − 1 − k(k − 1). We call a maxi-
mal representative of a k-tuple the lexicographic maxi-
mum of its orbit under the action of the dihedral group
(i.e. rotations and reflections of the k-tuple). We de-
note by Π the list of all distinct maximal representa-
tives of the k-partitions of n − 1 − k(k − 1), ordered
lexicograhically. For example, when k = 4 and n = 17,
Π = [4, 0, 0, 0], [3, 1, 0, 0], [3, 0, 1, 0], [2, 2, 0, 0], [2, 0, 2, 0],
[2, 1, 1, 0], [2, 1, 0, 1], [1, 1, 1, 1].

A suitable representation. We represent the projec-
tive plane as a disk where we identify antipodal bound-
ary points. Given a simple topological (nk)-configura-
tion (P,L), we fix a representation of its underlying pro-
jective plane which satisfies the following properties (see
Figure 3 left).

The leftmost point of the disk (which is identified with
the rightmost point of the disk) is a point of P , which
we call the basepoint. The k pseudolines of L passing
through the basepoint are called the frame pseudolines,
while the other n− k pseudolines of L are called work-
ing pseudolines. The frame pseudolines decompose the
projective plane into k connected regions which we call
frame regions. A crossing is a frame crossing if it in-
volves a frame pseudoline and a working crossing if it
involves only working pseudolines.

The boundary of the disk is a frame pseudoline, which
we call the baseline. We furthermore assume that the
segment length distribution Λ on the top half-circle ap-
pears in Π (i.e. is its own maximal representative), and
that no maximal representative of the segment length
distribution of a pseudoline of L appears before Λ in Π.
In particular, the leftmost segment of the baseline is a
longest segment of the configuration.



23rd Canadian Conference on Computational Geometry, 2011

12 11 10 9 8 7 6 5 4 3 2 1 0

12 11 8 9 10 5 6 7 4 3 0 1 2

12 11 8 9 5 6 0 4 7 10 3 1 2

12 8 0 5 9 11 6 4 7 10 3 1 2

0 8 12 5 9 4 6 11 7 1 3 10 2

0 8 4 5 12 1 6 9 3 7 11 10 2

0 1 4 8 5 3 6 12 9 7 2 10 11

0 1 4 8 5 3 6 2 7 9 12 10 11

0 1 4 2 3 5 8 6 7 9 12 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12

baseline

basepoint

frame
pseudolines

working
pseudolines

working
crossings

frame
crossings

sweepline

Begin

Working
crossing
Working
crossing

End

Working
crossing
Working
crossing

Frame
sweep
Frame
sweep
Frame
sweep

Figure 3: Suitable representation of a (174)-configuration, and the corresponding wiring diagram.

Wiring diagram and allowable sequence. Another in-
teresting representation of our (nk)-configuration is the
wiring diagram [6] of its working pseudolines (see Fig-
ure 3 right). It is obtained by sending the basepoint
to infinity in the horizontal direction. The frame pseu-
dolines are k horizontal lines, and the n − k working
pseudolines are vertical wires. The orders of the work-
ing pseudolines on a horizontal line sweeping the wiring
diagram from top to bottom form the so-called allow-
able sequence of the working arrangement, as defined
in [6].

4 Description of the algorithm

Main idea. Let us recall here the main idea of the al-
gorithm: to enumerate (nk)-configurations, we focus on
the relative positions of the k-crossings and ignore at
first the relative positions of the 2-crossings. More pre-
cisely, we first generate at least one (but as few as pos-
sible) representative of each mutation equivalent class
of (nk)-configurations.

Sweeping process. The algorithm sweeps the projec-
tive plane to construct a topological (nk)-configuration.
The sweepline sweeps the configuration from the base-
line on the top of the disk to the baseline on the bottom
of the disk. It always passes through the basepoint and
always completes the configuration into an arrangement
of n + 1 pseudolines. In other words, it sweeps the k
frame regions from top to bottom, reaching the sepa-
rating frame pseudoline when passing from one frame
region to the next one, and discovers along the way the
working pseudolines. Except those located on the frame
pseudolines, we assume that the crossings of the configu-

ration are reached one after the other by the sweepline.
After the sweepline swept a crossing, we remember the
order of its intersections with the working pseudolines.
In other words, the sweeping process provides us with
the allowable sequence of the working pseudolines of our
configuration.

Since any admissible mutation is irrelevant for us, we
only focus on the steps of the sweeping process where
our sweepline sweeps a k-crossing. Thus, two different
events can occur: when the sweepline sweeps a working
k-crossing, and when the sweepline sweeps a frame pseu-
doline. In the later case, we sweep simultaneously k− 1
frame k-crossings (each involving the frame pseudoline
and k − 1 working pseudolines), and n − 1 − k(k − 1)
frame 2-crossings (each involving the frame pseudoline
and a working pseudoline). Between two such events,
the sweepline may sweep working 2-crossings which are
only taken into account when we reach a new event.
Let us repeat again that the precise positions of these
working 2-crossings is irrelevant in our enumeration.

To obtain all possible solutions, we maintain a pri-
ority queue with all subconfigurations which have been
constructed so far, remembering for each one (i) the or-
der of the working pseudolines on the current sweepline,
(ii) the number of frame and working k-crossings and
2-crossings which have already been swept on each work-
ing pseudoline, (iii) the length of the segment currently
swept by the sweepline, and (iv) the history of the
sweeps which have been performed to reach this subcon-
figuration. At each step, we remove the first subconfigu-
ration from the priority queue, and insert all admissible
subconfigurations which can arise after sweeping a new
working k-crossing or a new frame pseudoline. We fi-
nally accept a configuration once we have swept k frame
pseudolines and n− k(k − 1) − 1 working k-crossings.



CCCG 2011, Toronto ON, August 10–12, 2011

left right

kernel

k-crossing

before

after
left right

kernel

k-crossingk-crossingk-crossing

Figure 4: Sweeping a working k-crossing (left) and a frame pseudoline (right).

Any subconfiguration considered during the algo-
rithm is a potential (nk)-configuration. Throughout
the process, we make sure that any pair of working
pseudolines cross at most once, that the number of
frame pseudolines (resp. of working k-crossings) already
swept never exceeds k (resp. n − 1 − k(k − 1)), and
that the total number of working 2-crossings never ex-
ceeds (n − 2k)(n − 1 − k(k − 1))/2. Furthermore,
on each pseudoline, the number of frame and working
k-crossings (resp. 2-crossings) already swept never ex-
ceeds k (resp. n− 1 − k(k − 1)), the number of work-
ing 2- and k-crossings already swept never exceeds
n− 1 − k(k − 1), and the segment currently swept is
not longer than the leftmost segment of the baseline.

Initialization. We initialize our algorithm sweeping the
baseline. We only have to choose the distribution of the
lengths of the segments on the baseline. The possibili-
ties are given by the list Π of maximal representatives
of k-partitions of n− 1 − k(k − 1).

Sweep a working k-crossing. If we decide to sweep
a working k-crossing, we have to choose the k working
pseudolines which intersect at this k-crossing, and the
direction of the other working pseudolines.

Since we are allowed to perform any admissible mu-
tation, we can assume that all the pseudolines located
to the left of the leftmost pseudoline of the working
k-crossing, and all those located to the right of the right-
most pseudoline of the working k-crossing do not move.

We say that the pseudolines located between the
leftmost and the rightmost pseudolines of the working
k-crossing form the kernel of the working k-crossing.
We have to choose the positions of the pseudolines of
the kernel after the flip: each pseudoline of the kernel
either belongs to the working k-crossing, or goes to its
left, or goes to its right (see Figure 4 left).

A choice of directions for the kernel is admissible pro-
vided that (i) each pseudoline involved in the k-crossing
can still accept a working k-crossing; (ii) each pseu-
doline of the kernel can still accept as many working
2-crossings as implied by the choice of directions for the
kernel; (iii) no segment becomes longer than the left-
most segment of the baseline; and (iv) any two pseudo-

lines which are forced to cross by the choice of directions
for the kernel did not cross earlier (i.e. they still form an
inversion on the sweepline before we sweep the working
k-crossing).

Sweep a frame pseudoline. If we decide to sweep
a frame pseudoline, we have to choose the (k − 1)2

working pseudolines involved in one of the k − 1 frame
k-crossings, and the direction of the other working pseu-
dolines.

As before, we can assume that a pseudoline does not
move if it is located to the left of the leftmost pseudoline
involved in one of the k− 1 frame k-crossings, or to the
right of the rightmost pseudoline involved in one of the
k − 1 frame k-crossings. Otherwise, we can perform
admissible mutations to ensure this situation.

The other pseudolines form again the kernel of the
frame sweep, and we have to choose their positions after
the flip. Each pseudoline of the kernel either belongs to
one of the k−1 frame k-crossings, or can choose among
k possible directions: before the first frame k-crossing,
or between two consecutive frame k-crossings, or after
the last frame k-crossing (see Figure 4 right).

As before, a choice of directions for the kernel is ad-
missible if (i) each pseudoline involved (resp. not in-
volved) in one of the k − 1 frame k-crossings can still
accept a frame k-crossing (resp. a frame 2-crossing);
(ii) each pseudoline of the kernel can still accept as
many working 2-crossings as implied by the choice of di-
rections for the kernel; (iii) no segment becomes longer
than the leftmost segment of the baseline; and (iv) any
two pseudolines which are forced to cross by the choice
of directions for the kernel did not cross earlier (i.e. they
still form an inversion on the sweepline before we sweep
the frame pseudoline).

Sweep the last frame region. Our sweeping process
finishes once we have swept n − 1 − k(k − 1) work-
ing k-crossings and k frame pseudolines. Each result-
ing subconfiguration should still be completed into a
topological (nk)-configuration with some necessary re-
maining 2-crossings. More precisely, we need to add on
each working pseudoline as many working 2-crossings
as its number of inversions in the permutation given by



23rd Canadian Conference on Computational Geometry, 2011

the working pseudolines on the final sweepline, without
creating segments that are too long.

All the constructed configurations are guaranteed to
be valid topological (nk)-configurations. To make sure
that we indeed obtain the representation presented in
Section 3, we remove each configuration (P,L) in which
the maximal representative of the segment length distri-
bution of a pseudoline of L appears in the list Π before
the segment length distribution of its baseline.

Parallelization. To close this description, we observe
that our algorithm is easily parallelizable on different
computers since it is a dynamic research in a tree. We
did not use parallelization to obtain the current results,
but it will certainly be an important advantage of the
algorithm for exploring the question of finding the first
integer n for which topological (n5)-configurations exist.

5 Results

Check former results. As a first application, our algo-
rithm enables us to check easily all former enumerations
of topologically realizable combinatorial (nk)-configura-
tions. The Java implementation developed by the sec-
ond author finds all (nk)-configurations in less than a
minute1 when k = 3 and n ≤ 11, or when k = 4 and
n ≤ 17. In particular, we checked that there is no topo-
logical (n4)-configuration when n ≤ 16 [4], and that
there is a single combinatorial (174)-configuration which
can be realized by (several) topological (174)-configura-
tions, but which cannot be realized geometrically [5].
When k = 4 and k = 18, we reconstructed the 16 com-
binatorial equivalence classes of topological (184)-confi-
gurations depicted in [5, Figure 6]. To obtain this re-
sult, our implementation needed about one hour1, com-
pared to months of CPU-time used in [11]. The two
(184)-configurations presented in Figure 1, which are
combinatorially equivalent but not mutation equivalent,
occured while we were reducing the list of (184)-configu-
rations up to combinatorial equivalence, using as a first
reduction a certain invariant of mutation equivalence.

Obtain new results. Our algorithm can furthermore
be used to derive new enumerative results. To answer
the question of the existence of geometric (194)-configu-
rations, our first step is to compute the complete list of
combinatorial (194)-configurations that admit a topo-
logical realization. We found 4028 combinatorially dis-
tinct topologically realizable (194)-configurations (222
of which are self-dual). This task has been accomplished
by our algorithm within 16 days of CPU-time1. We un-
derline again that we did not use the extended list of
all 269224652 combinatorial (194)-configurations com-
puted in [10] to obtain this result. A detailed investi-

1Computation times on a double core processor on 2.4 GHz.

gation and analysis of this result will be published in a
subsequent paper.

Acknowledgements

The first author thanks Leah Berman from the Uni-
versity of Alaska Fairbanks for discussions about the
subject. He also thanks three colleagues from the
Universidad Nacional Autónoma de México, namely
Rodolfo San Augustin Chi, Ricardo Strausz Santiago,
and Octavio Paez Osuna, for many stimulating discus-
sions about various different earlier versions of the pre-
sented algorithm during his one year sabbatical stay
(2008/2009) in México City.

References

[1] A. Björner, M. Las Vergnas, B. Sturmfels, N. White,
and G. M. Ziegler. Oriented matroids, volume 46 of En-
cyclopedia of Mathematics and its Applications. Cam-
bridge University Press, Cambridge, second edition,
1999.

[2] J. Bokowski. Computational oriented matroids. Cam-
bridge University Press, Cambridge, 2006.

[3] J. Bokowski, B. Grünbaum, and L. Schewe. Topologi-
cal configurations (n4) exist for all n ≥ 17. European
J. Combin., 30(8):1778–1785, 2009.

[4] J. Bokowski and L. Schewe. There are no realizable 154-
and 164-configurations. Rev. Roumaine Math. Pures
Appl., 50(5-6):483–493, 2005.

[5] J. Bokowski and L. Schewe. On the finite set of missing
geometric configurations (n4). To appear in Computa-
tional Geometry: Theory and Applications, 2011.

[6] J. E. Goodman and R. Pollack. Allowable sequences
and order types in discrete and computational geome-
try. In New trends in discrete and computational geom-
etry, volume 10 of Algorithms Combin., pages 103–134.
Springer, Berlin, 1993.

[7] B. Grünbaum. Connected (n4) configurations exist
for almost all n—second update. Geombinatorics,
16(2):254–261, 2006.

[8] B. Grünbaum. Configurations of points and lines, vol-
ume 103 of Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 2009.

[9] D. E. Knuth. Axioms and hulls, volume 606 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin,
1992.

[10] O. Páez Osuna and R. San Agust́ın Chi. The combina-
torial (194) configurations. Preprint, 2011.

[11] L. Schewe. Satisfiability Problems in Discrete Geom-
etry. PhD thesis, Technische Universität Darmstadt,
2007.


