
CCCG 2011, Toronto ON, August 10–12, 2011

An In-Place Priority Search Tree∗

Minati De† Anil Maheshwari‡ Subhas C. Nandy† Michiel Smid‡

Abstract

One of the classic data structures for storing point sets
in R2 is the priority search tree, introduced by Mc-
Creight in 1985. We show that this data structure can
be made in-place, i.e., it can be stored in an array such
that each entry only stores one point of the point set.
We show that the standard query operations can be an-
swered within the same time bounds as for the original
priority search tree, while using only O(1) extra space.

1 Introduction

Let P be a set of n points in R2. A priority search tree,
as introduced by McCreight [2], is a binary tree T with
exactly one node for each point of P and that has the
following two properties:

• For each non-root node u, the point stored at u has
a smaller y-coordinate than the y-coordinate stored
at the parent of u.

• For each internal node u, all points in the left sub-
tree of u have an x-coordinate which is less than
the x-coordinate of any point in the right subtree
of u.

The first property implies that T is a max-heap on the y-
coordinates of the points in P . The second property im-
plies that T is a binary search tree on the x-coordinates
of the points in P , except that there is no relation be-
tween the x-coordinates of the points stored at u and
any of its children.

In order to use T as a binary search tree on the x-
coordinates, McCreight stored at each internal node u
one additional point pu of P , viz., the point in the left
subtree of u whose x-coordinate is maximum. Thus,
the data structure uses O(n) space and, by taking for
T a balanced tree, several types of range queries can be
answered efficiently:

• HighestNE(x0, y0): report the highest point of
P in the north-east quadrant of the query point
(x0, y0).

∗Research supported by NSERC and the Commonwealth
Scholarship Program of DFAIT.
†Indian Statistical Institute, Kolkata, India. Part of this work

was done while M.D. was visiting Carleton University, Ottawa,
Canada. minati.isi@gmail.com
‡School of Computer Science, Carleton University, Ottawa,

Canada.

• LeftMostNE(x0, y0): report the leftmost point
of P in the north-east quadrant of the query point
(x0, y0).

• Highest3Sided(x0, x1, y0); report the highest
point of P in the 3-sided query range [x0, x1] ×
[y0,∞).

• Enumerate3Sided(x0, x1, y0); report all points of
P in the 3-sided query range [x0, x1]× [y0,∞).

The first three queries can be answered in O(log n) time,
whereas the fourth query takes O(log n+m) time, where
m is the number of points of P that are in the query
range.

In this paper, we show that these results can also be
obtained without storing the “splitting” points pu at
the internal nodes of the tree. Thus, any node of the
tree stores exactly one point of P and, as a result, we
obtain an in-place implementation of the priority search
tree: We take for T a binary tree of height h = blog nc,
such that the levels1 0, 1, . . . , h − 1 are full and level h
consists of n − (2h − 1) nodes which are aligned as far
as possible to the left. This allows us to store the tree,
like in a standard heap, in an array P [1 . . . n]; the root
is stored at P [1], its left and right children in P [2] and
P [3], etc.

In the rest of this paper, we will present algorithms
for constructing the in-place priority search tree and
answering the above queries. Each of these algorithms
uses, besides the array P [1 . . . n], only O(1) extra space,
in the sense that a constant number of variables are
used, each one being an integer of O(log n) bits. The
main result of this paper is the following:

Theorem 1 Let P be a set of n points in R2.

1. The in-place priority search tree can be constructed
in O(n log n) time using O(1) extra space.

2. Each of the queries HighestNE, LeftMostNE,
and Highest3Sided can be answered in O(log n)
time using O(1) extra space.

3. The query Enumerate3Sided can be answered in
O(log n+m) time using O(1) extra space, where m
is the number of points of P that are in the query
range.

1The root is at level 0.

23d Canadian Conference on Computational Geometry, 2011

For ease of presentation, we assume that no two
points in the set P have the same x-coordinates and
no two points in P have the same y-coordinates. The
x- and y-coordinates of a point p in R2 will be denoted
by x(p) and y(p), respectively.

2 Constructing the in-place priority search tree

Let h = blog nc be the height of the priority search
tree. Our algorithm constructs the tree level by level
and maintains the following invariant:

• The subarray P [1 . . . 2i−1] stores levels 0, 1, . . . , i−
1 of the tree, and the points in the subarray
P [2i . . . n] are sorted by their x-coordinates.

Algorithm 1: ConstructPST

Input: An array P [1 . . . n] of points in R2.
Output: The priority search tree of those points

stored in P .
1 h = blog nc; A = n− (2h − 1);
2 HeapSort(1, n);
3 for i = 0 to h− 1 do
4 k = bA/2h−ic;
5 K1 = 2h+1−i − 1;
6 K2 = 2h−i − 1 + A− k2h−i;
7 K3 = 2h−i − 1;
8 for j = 1 to k do
9 ` = index in

{2i + (j − 1)K1, . . . , 2i + jK1 − 1} such that
y(P [`]) is maximum;

10 swap P [`] and P [2i + j − 1] ;
11 if k < 2i then
12 ` = index in

{2i + kK1, . . . , 2i + kK1 + K2 − 1} such that
y(P [`]) is maximum;

13 swap P [`] and P [2i + k];
14 m = 2i + kK1 + K2;
15 for j = 1 to 2i − k − 1 do
16 ` = index in

{m + (j − 1)K3, . . . ,m + jK3 − 1} such
that y(P [`]) is maximum;

17 swap P [`] and P [2i + k + j];
18 HeapSort(2i+1, n);

The algorithm starts by sorting the array P [1 . . . n]
by x-coordinates. After this sorting step, the invariant
holds with i = 0.

Let i be an index with 0 ≤ i < h, and consider the i-th
step of the algorithm. Let A = n− (2h−1) be the num-
ber of nodes at level h of the tree, and let k = bA/2h−ic.
Level i consists of 2i nodes. If k = 2i, then each of these
nodes is the root of a subtree of size 2h+1−i − 1. Oth-
erwise, we have k < 2i, in which case level i consists of,
from left to right,

1. k nodes, which are roots of subtrees, each of size
K1 = 2h+1−i − 1,

2. one node, which is the root of a subtree of size
K2 = 2h−i − 1 + A− k2h−i,

3. 2i − 1− k nodes, which are roots of subtrees, each
of size K3 = 2h−i − 1.

We divide the subarray P [2i . . . n] into 2i blocks: If
k = 2i, then there are k blocks of size 2h+1−i − 1. Oth-
erwise, there are, from left to right, (i) k blocks of size
K1, (ii) one block of size K2, and (iii) 2i − 1− k blocks
of size K3.

The algorithm scans the subarray P [2i . . . n] and
in each of the 2i blocks, finds the highest point.
These highest points are swapped with the subarray
P [2i . . . 2i+1 − 1]. At this moment, level i of the tree
has been constructed, but the elements in the subarray
P [2i+1 . . . n] may not be sorted by their x-coordinates.
Therefore, the algorithm runs the heapsort algorithm
on this subarray.

The complete algorithm for constructing the in-place
priority search tree is given in Algorithm 1. It uses
algorithm HeapSort(m, n), which runs the heapsort
algorithm on the subarray P [m . . . n].

The correctness of this algorithm follows by observing
that the invariant is correctly maintained. The initial
sorting in line 2 takes O(n log n) time using O(1) extra
space. Each of the h = blog nc iterations of the main
for-loop takes O(n log n) time and O(1) extra space. We
can use one extra variable to maintain the value 2i, so
that it does not have to be recomputed during the for-
loop. Thus, the entire algorithm ConstructPST takes
O(n log2 n) time and uses O(1) extra space.2

3 Queries on the in-place priority search tree

In this section, we present the algorithms for the query
problems mentioned in Section 1. For ease of presenta-
tion, we describe the algorithms using the terminology
of trees. We will denote by T the priority search tree
that is implicitly defined by the array P [1 . . . n] that
results by running algorithm ConstructPST. Recall
that the root of T , denoted by root(T), is stored at P [1].
Consider a node whose index in P is i. If 2i ≤ n, then
this node has a left child, which is stored at P [2i]. If
2i + 1 ≤ n, then this node has a right child, which is
stored at P [2i + 1]. This node is a leaf if and only if
2i > n. We will identify each node in T with the point
of P stored at that node. For any p in P , we denote by
Tp the subtree rooted at p. Furthermore, the left and

2Using the in-place algorithm of Katajainen and Pasanen [1]
that stably sorts a sequence of n bits in O(n) time, the running
time can be improved to O(n log n) with O(1) extra space. The
details will be given in the full paper.

CCCG 2011, Toronto ON, August 10–12, 2011

right children of p (if they exist) are denoted by pl and
pr, respectively.

3.1 HighestNE(x0, y0)

For two given real numbers x0 and y0, let Q = [x0,∞)×
[y0,∞) be the north-east quadrant of the point (x0, y0).
If Q ∩ P 6= ∅, define p∗ to be the highest point of P in
Q. If Q ∩ P = ∅, define p∗ to be the point (∞,−∞).
Algorithm HighestNE(x0, y0) will return the point p∗.

The algorithm uses two variables best and p, which
satisfy the following invariant:

• If Q ∩ P 6= ∅, then p∗ ∈ {best} ∪ Tp.

• If Q ∩ P = ∅, then p∗ = best .

The algorithm initializes best = (∞,−∞) and p =
root(T). During the algorithm, p moves down the tree
according to the relative positions of p, its children, and
the quadrant Q. The algorithm is given in Algorithm 2.
It uses the procedure UpdateHighest(t), which takes
as input a point t and does the following: If t ∈ Q and
y(t) > y(best) then it assigns best = t.

Algorithm 2: HighestNE(x0, y0)
Input: Real numbers x0 and y0 defining the

north-east quadrant Q.
Output: The highest point p∗ in Q ∩ P , if it

exists; otherwise the point (∞,−∞).
1 best = (∞,−∞); p = root(T);
2 while p is not a leaf do
3 if p ∈ Q then
4 UpdateHighest(p); p = pl;
5 else if y(p) < y0 then
6 p = pl;
7 else if p has one child then
8 p = pl;
9 else if x(pr) ≤ x0 then

10 p = pr;
11 else if x(pl) ≥ x0 then
12 p = higher among pl and pr;
13 else if y(pr) < y0 then
14 p = pl;
15 else
16 UpdateHighest(pr); p = pl;
17 UpdateHighest(p);
18 return best ;

The correctness of this algorithm follows from the fact
that the invariant is correctly maintained. Since in each
iteration, p moves down the tree, the while-loop makes
O(log n) iterations, each one taking O(1) time. Thus,
the total time for algorithm HighestNE is O(log n). It
follows from the algorithm that it uses O(1) extra space.

p q

prp` q`

qr

(a)

p q

pr
p`

q`

qr

(b)

Figure 1: Two cases for LeftMostNE(x0, y0).

3.2 LeftMostNE(x0, y0)

As before, let Q = [x0,∞) × [y0,∞) be the north-east
quadrant of the point (x0, y0). If Q∩P 6= ∅, define p∗ to
be the leftmost point of P in Q. If Q∩P = ∅, define p∗ to
be the point (∞,∞). Algorithm LeftMostNE(x0, y0)
will return the point p∗.

The algorithm uses three variables best , p, and q,
which satisfy the following invariant:

• If Q ∩ P 6= ∅, then p∗ ∈ {best} ∪ Tp ∪ Tq.

• If Q ∩ P = ∅, then p∗ = best .

• p and q are at the same level of T and x(p) ≤ x(q).

The algorithm starts by initializing best = (∞,∞),
p = root(T), and q = root(T). During the algorithm,
p and q move down the tree according to the relative
positions of their children and the quadrant Q. The
algorithm is given in Algorithm 3. It uses the procedure
UpdateLeftMost(t), which takes as input a point t
and does the following: If t ∈ Q and x(t) < x(best) then
it assigns best = t.

It follows by a careful case analysis that the invariant
is correctly maintained, implying the correctness of the
algorithm. In each iteration of the while-loop, p and
q move down the tree, except in line 12. In the latter
case, however, p will become a leaf in the next iteration.
As a result, the while-loop makes O(log n) iterations.
Since each iteration takes O(1) time, the total time for
algorithm LeftMostNE is O(log n). It follows from
the algorithm that it uses O(1) extra space.

3.3 Highest3Sided(x0, x1, y0)

The three real numbers x0, x1, and y0 define the three-
sided range Q = [x0, x1] × [y0,∞). If Q ∩ P 6= ∅,
define p∗ to be the highest point of P in Q. If
Q ∩ P = ∅, define p∗ to be the point (∞,−∞). Al-
gorithm Highest3Sided(x0, x1, y0) returns the point
p∗.

The algorithm uses two bits L and R, and three vari-
ables best , p, and q. As before, best stores the highest
point in Q found so far. The bit L indicates whether or
not p∗ may be in the subtree of p; if L = 1, then p is to
the left of Q. Similarly, the bit R indicates whether or
not p∗ may be in the subtree of q; if R = 1, then q is to

23d Canadian Conference on Computational Geometry, 2011

Algorithm 3: LeftMostNE(x0, y0)
Input: Real numbers x0 and y0 defining the

north-east quadrant Q.
Output: The leftmost point p∗ in Q ∩ P , if it

exists; otherwise the point (∞,∞).
1 best = (∞,∞); p = root(T); q = root(T);
2 while p is not a leaf do
3 UpdateLeftMost(p); UpdateLeftMost(q);
4 if p = q then
5 if p has one child then
6 q = pl; p = pl;
7 else
8 q = pr; p = pl;
9 else

10 // p 6= q
11 if q is leaf then
12 q = p;
13 else if q has one child then
14 if y(ql) < y0 then
15 q = pr; p = pl;
16 else if y(pr) < y0 then
17 p = pl; q = ql;
18 else if x(ql) < x0 then
19 p = ql; q = ql;
20 else if x(pr) < x0 then
21 p = pr; q = ql;
22 else
23 q = pr; p = pl;
24 else
25 // q has two children
26 if x(pr) ≥ x0 and y(pr) ≥ y0 then
27 q = pr;p = pl; // Fig. 1(a)
28 else if x(pr) < x0; then
29 if x(ql) < x0 then
30 p = ql; q = qr;
31 else if y(ql) < y0 then
32 p = pr; q = qr;
33 else
34 p = pr; q = ql;
35 else
36 // x(pr) ≥ x0 and y(pr) < y0

37 if y(pl) < y0 then
38 p = ql; q = qr; // Fig. 1(b)
39 else
40 p = pl;
41 if y(ql) ≥ y0 then
42 q = ql

43 else
44 q = qr

45 UpdateLeftMost(p); UpdateLeftMostq;
46 return best ;

the right of Q. More formally, the variables satisfy the
following invariant:

• If L = 1 then x(p) < x0.

• If R = 1 then x(q) > x1.

• If Q∩P 6= ∅, then p∗ ∈ {best}∪
(
∪z∈ITN(z)

)
, where

I = {z ∈ {L, R}|z = 1} and

N(z) =
{

p if z = L,
q if z = R.

• If Q ∩ P = ∅, then best = (∞,−∞).

The algorithm is given in Algorithm 4. In the initial-
ization, the variables L, R, best , p, and q are assigned
depending on the position of the root of T with respect
to the query region Q.

At any moment during the algorithm, if L = 1, then
we say that p is an observing point. Similarly, if R = 1,
we say that q is an observing point.

Consider one iteration of the while-loop. The algo-
rithm chooses an observing point that is closest to the
root of T . (For ease of presentation, our pseudocode
does not explicitly maintain the levels in T of p and q.)
If this point is p, algorithm CheckLeft(p) is called;
otherwise, algorithm CheckRight(q) is called.

Algorithm 4: Highest3Sided(x0, x1, y0)
Input: Real numbers x0, x1, and y0 defining the

region Q = [x0, x1]× [y0,∞).
Output: The highest point p∗ in Q ∩ P , if it

exists; otherwise the point (∞,−∞).
1 best = (∞,−∞);
2 if x0 ≤ x(root(T)) ≤ x1 then
3 L = 0; R = 0;
4 if y(root(T)) ≥ y0 then
5 best = root(T)
6 else if x(root(T)) < x0 then
7 p = root(T); L = 1; R = 0;
8 else
9 q = root(T); L = 0; R = 1

10 while L = 1 ∨R = 1 do
11 I = {z ∈ {L, R}|z = 1};
12 z = element of I for which level(N(z)) is

minimum;
13 if z = L then
14 CheckLeft(p);
15 else
16 CheckRight(q);
17 return best ;

We describe the procedure for CheckLeft(p) in Al-
gorithm 5. The procedure for CheckRight(q) is sym-
metric and omitted from this paper. Both these pro-
cedures use algorithm UpdateHighest(t), which takes

CCCG 2011, Toronto ON, August 10–12, 2011

as input a point t and does the following: If t ∈ Q and
y(t) > y(best) then it assigns best = t.

Algorithm 5: CheckLeft(p)
Input: A node p such that x(p) < x0.

1 if p is a leaf then
2 L = 0
3 else if p has one child then
4 if x0 ≤ x(pl) ≤ x1 then
5 UpdateHighest(pl); L = 0;
6 else if x(pl) < x0 then
7 p = pl

8 else
9 q = pl; R = 1; L = 0

10 else
11 // p has two children
12 if x(pl) < x0 then
13 if x(pr) < x0 then
14 p = pr

15 else if x(pr) ≤ x1 then
16 UpdateHighest(pr);
17 p = pl;
18 else
19 q = pr; p = pl; R = 1
20 else if x(pl) ≤ x1 then
21 UpdateHighest(pl); L = 0 ;
22 if x(pr) > x1 then
23 q = pr; R = 1;
24 else
25 UpdateHighest(pr);
26 else
27 q = pl; L = 0; R = 1

Consider the set I and the value of ` = level(N(z)) in
lines 11 and 12 of algorithm Highest3Sided. Assume
that algorithm CheckLeft(p) is called. During this
algorithm, either p moves one level down in the tree T
or the bit L is set to 0. In addition, the point q either
stays the same or it becomes a child of (the original) p.
Therefore, in one iteration of the while-loop in algorithm
Highest3Sided, the value of ` = level(N(z)) either in-
creases, or ` does not change in which case the size of the
set {z′ ∈ I|level(N(z′)) = `} decreases. It follows that
the number of iterations of the while-loop of algorithm
Highest3Sided is at most twice the height of T , i.e.,
O(log n). Since each iteration takes O(1) time, it fol-
lows that the total time for algorithm Highest3Sided
is O(log n). It follows from the algorithm that it uses
O(1) extra space.

3.4 Enumerate3Sided(x0, x1, y0)

Given three real numbers x0, x1, and y0, define the
three-sided range Q = [x0, x1] × [y0,∞). Algorithm
Enumerate3Sided(x0, x1, y0) returns all elements of
Q ∩ P . This algorithm uses the same approach as al-

gorithm Highest3Sided. Besides the two bits L and
R, it uses two additional bits L′ and R′. Each of these
four bits L, L′, R, and R′ corresponds to a subtree of T
rooted at the points p, p′, q, and q′, respectively; if the
bit is equal to one, then the subtree may contain points
that are in the query region Q.

Algorithm 6: Enumerate3Sided(x0, x1, y0)
Input: Real numbers x0, x1, and y0 defining the

region Q = [x0, x1]× [y0,∞).
Output: All elements of Q ∩ P .

1 if y(root(T)) < y0 then
2 L = L′ = R = R′ = 0
3 else if x(root(T)) < x0 then
4 p = root(T) ; L = 1; L′ = R = R′ = 0
5 else if x(root(T)) < x1 then
6 p′ = root(T); L′ = 1; L = R = R′ = 0
7 else
8 q = root(T); R = 1; L = L′ = R′ = 0
9 while L = 1 ∨ L′ = 1 ∨R = 1 ∨R′ = 1 do

10 I = {z ∈ {L, L′, R, R}|z = 1};
11 z = element of I for which level(N(z)) is

minimum;
12 if z = L then
13 EnumerateLeft(p);
14 else if z = L′ then
15 EnumerateLeftIn(p′);
16 else if z = R then
17 EnumerateRight(q);
18 else
19 EnumerateRightIn(q′);

The following invariant will be maintained:

• If L = 1 then x(p) < x0.

• If L′ = 1 then x0 ≤ x(p′) ≤ x1.

• If R = 1 then x(q) > x1.

• If R′ = 1 then x0 ≤ x(q′) ≤ x1.

• If L′ = 1 and R′ = 1 then x(p′) ≤ x(q′).

• All points in (Q ∩ P) \
(
∪z∈ITN(z)

)
have been re-

ported, where I = {z ∈ {L, L′, R, R′}|z = 1} and

N(z) =


p if z = L,
p′ if z = L′,
q if z = R,
q′ if z = R′.

The algorithm is given in Algorithm 6. In one
iteration of the while-loop, the algorithm chooses an
observing point that is closest to the root. Depending
on this point, one of the procedures EnumerateLeft,
EnumerateLeftIn, EnumerateRight, and

23d Canadian Conference on Computational Geometry, 2011

EnumerateRightIn is called. The first two pro-
cedures are given in Algorithms 7 and 8; the other two
are symmetric and omitted from this paper.

Algorithm 7: EnumerateLeft(p)
Input: A node p such that x(p) < x0.

1 if p is a leaf then
2 L = 0
3 else if p has one child then
4 if x0 ≤ x(pl) ≤ x1 then
5 if L′ = 1 ∧R′ = 1 then
6 Explore(p′);
7 else if L′ = 1 then
8 q′ = p′; R′ = 1
9 p′ = pl; L′ = 1; L = 0;

10 else if x(pl) < x0 then
11 p = pl

12 else
13 q = pl; R = 1; L = 0
14 else
15 /* p has two children */
16 if x(pl) < x0 then
17 if x(pr) < x0 then
18 p = pr

19 else if x(pr) ≤ x1 then
20 if L′ = 1 ∧R′ = 1 then
21 Explore(p′);
22 else if L′ = 1 then
23 q′ = p′; R′ = 1
24 p′ = pr; p = pl; L′ = 1
25 else
26 q = pr; p = pl; R = 1
27 else if x(pl) ≤ x1 then
28 if x(pr) > x1 then
29 q = pr; p′ = pl; L = 0; L′ = R = 1;
30 else
31 if R′ = 1 ∧ L′ = 1 then
32 Explore(p′); Explore(pr);
33 else if L′ = 1 then
34 Explore(pr); q′ = p′; R′ = 1
35 else if R′ = 1 then
36 Explore(pr); L′ = 1
37 else
38 q′ = pr; L′ = R′ = 1
39 p′ = pl; L = 0
40 else
41 q = pl; L = 0; R = 1

These procedures use algorithm Explore(t), which
takes as input a node t in T and reports all points in
Tt whose y-coordinates are at least y0. This algorithm
does an in-order traversal of Tt, using O(1) extra space,
and runs in time O(1 + |Q ∩ Tt|).

As in Section 3.3, it can be shown that the
number of iterations of the while-loop of algorithm

Enumerate3Sided is at most four times the height
of T , i.e., O(log n). It follows that the total time for
algorithm Highest3Sided is O(log n + |Q∩P |). It fol-
lows from the algorithm that it uses O(1) extra space.

Algorithm 8: EnumerateLeftIn(p′)
Input: A node p′ such that x0 ≤ x(p′) ≤ x1.

1 if y(p′) ≥ y0 then
2 report p′;
3 if p′ is a leaf then
4 L′ = 0
5 else if p′ has one child then
6 if x0 ≤ x(p′l) ≤ x1 then
7 p′ = p′l;
8 else if x(p′l) < x0 then
9 p = p′l; L′ = 0; L = 1

10 else
11 q = p′l; R = 1; L′ = 0
12 else
13 // p′ has two children
14 if x(p′l) < x0 then
15 if x(p′r) < x0 then
16 p = p′r; L = 1; L′ = 0
17 else if x(p′r) ≤ x1 then
18 p = p′l; p′ = p′r; L = 1;
19 else
20 q = p′r; p = p′l; R = 1; L = 1; L′ = 0
21 else if x(p′l) ≤ x1 then
22 if x(p′r) > x1 then
23 q = p′r; p′ = p′l; R = 1;
24 else
25 if R′ = 1 then
26 Explore(p′r); p′ = p′l
27 else
28 q′ = p′r; p′ = p′l; R′ = 1
29 else
30 q = p′l; L′ = 0; R = 1

4 Conclusion

Our motivation for creating an in-place priority search
tree was for designing an in-place algorithm for finding
the maximum area axis-parallel empty rectangle among
a set of n point obstacles in a rectangular region. It can
be shown that using our in-place priority search tree
one can recognize the desired rectangle in O(m log n)
time using O(1) extra-space, where m is the number
of all possible maximal empty rectangles. It will be
worthwhile to find other applications where this tree
may help in saving space.

References

[1] J. Katajainen and T. Pasanen. Stable minimum space
partitioning in linear time. BIT, 32(4):580–585, 1992.

[2] E. M. McCreight. Priority search trees. SIAM J. Com-
put., 14(2):257–276, 1985.

