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Characterization of Shortest Paths

on Directional Frictional Polyhedral Surfaces

Gutemberg Guerra-Filho∗ Pedro J. de Rezende†

Abstract

In this paper, we address a shortest path problem where
an autonomous vehicle moves on a polyhedral surface
according to a distance function that depends on the
direction of the movement (directional) and on the fric-
tion of the space (frictional). This shortest path prob-
lem generalizes a hierarchy of problems and finds ge-
ometric structure to solve several proximity problems.
We perform the characterization of shortest paths for a
directional frictional geodesic (DFG) distance function
on polyhedral surfaces. We derive the local optimality
criterion necessary to solve the corresponding shortest
path problem using the continuous Dijkstra algorithm
[11]. The derivation of this optimality criterion essen-
tially involves demonstrating the strict convexity of the
DFG distance function. This contribution is the most
fundamental result that enables all constructions of the
continuous Dijkstra algorithm to solve the correspond-
ing DFG shortest path problem.

1 Introduction

Path planning still remains an active field with modern
applications such as autonomous vehicles and surveil-
lance systems [1, 5, 7]. Although some effort has been
made on path planning in unknown and dynamic envi-
ronments [4, 19], the shortest path planning problems
in known static environments are a fundamental step
towards these spaces.
In this paper, we address a shortest path problem

where an autonomous vehicle moves on a polyhedral
surface according to a distance function that depends
on the direction of the movement (directional) and on
the friction of the space (frictional). More specifically,
the distance function considers the total work done by
an external force applied to the vehicle to move it from a
point to another. Therefore, we generalize the shortest
path problem on polyhedral surfaces [11, 12] to consider
the moving direction, friction, and slope.
The continuous Dijkstra paradigm [11] is an algo-

rithm that solves several shortest path problems by sim-
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ulating the propagation of a wave from a source point to
all points in the space. The structure of the wave is up-
dated at discrete events when the wave reaches vertices
and edges. This structure consists of intervals of opti-
mality subdividing each edge according to the sequences
of vertices and edges that uniquely define a path from
the source to any point in the interval.
The continuous Dijkstra algorithm finds shortest

paths by exploring characteristic properties related to
the local behavior of the shortest paths. The char-
acterization of shortest paths consists of the determi-
nation of a local optimality criterion. In this paper,
we perform the characterization of shortest paths for a
directional frictional geodesic (DFG) distance function
on polyhedral surfaces. We derive the local optimality
criterion necessary to solve the corresponding shortest
path problem using the continuous Dijkstra algorithm.
The derivation of this optimality criterion essentially
involves demonstrating the strict convexity of the DFG
distance function.
Section 2 defines the shortest path problem addressed

in this paper and the corresponding distance function
considered in this problem. Section 3 reduces a hierar-
chy of shortest path problems to the DFG shortest path
problem. In section 4, we present the characterization
of geodesics and shortest paths on polyhedral surfaces
according to this distance function. Section 5 has our
concluding remarks.

2 Directional Frictional Shortest Path Problem

Let S be a polyhedral surface, possibly non-convex,
specified by a set of faces, edges, and vertices. We as-
sume that all faces of S are triangles since simple poly-
gons may be triangulated in linear time on the number
of vertices [2]. We consider bounded polyhedral surfaces,
that is, a surface with a finite number of bounded faces.
Based on Newtonian mechanics, we address a shortest

path problem related to a point particle moving on the
surface S according to a path of minimum resistance.
As a distance function, we consider the total amount of
mechanical work that must be done to move the particle
through the path. More specifically, the distance func-
tion considers the work done by an external force F to
move the particle between points on the same face of S.
The forces acting on the particle, besides the external
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force F , are the weight P (|P | = m.g), the normal N
(|N | = |P | cosαf ), and the friction A (|A| = µf |N |),
where m is the mass of the particle, g is the accelera-
tion of gravity, αf is the acute angle corresponding to
the slope between a face f and the horizontal plane, and
µf is the kinetic friction coefficient of face f . We assume
a constant kinetic friction coefficient µf and a constant
slope αf for all points on each face f of S. The static
friction force is ignored. We also assume that µf is fi-
nite and positive. Thus, we do not consider obstacles or
free regions.
The vector sum of the forces weight and normal

(P ⊕ N) results in a force RPN . This force is con-
tained on the face with direction of the gradient, that is,
perpendicular to the intersection between the face and
the horizontal plane (see Fig. 1). The forces weight-
normal RPN and friction A implies in a resulting force
RPNA = RPN ⊕ A according to angle β (see Fig. 1).
We assume the acceleration of the particle is zero (i.e.,
a constant positive speed). Therefore, since the result-
ing force of all forces is null, we conclude that F has the
same direction and size of RPNA, but opposite orienta-
tion. Thus, the size of force F is:

|F | = mg
√

sin2 αf + 2µf sinαf cosαf cosβ + µ2
f cos2 αf .
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N
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Figure 1: Resulting force acting on the body.

We define the directional frictional geodesic (DFG)
distance function such that each face f is associated
with a kinetic friction coefficient µf > 0 that specifies
the resistance to move on the interior of face f . Sim-
ilarly, each edge e is associated with a kinetic friction
coefficient µe > 0. According to the DFG distance, the
length of a line segment from a point s to a point t in the
edge e is the size of the external force F for β ∈ {0,π}
times the euclidean distance between s and t:

mg|µe cosαe + sinαe cosβ||st|,

where αe is the slope angle between e and its orthogonal
projection into the horizontal plane. The length of a line
segment from a point s to a point t on the interior of
face f is the size of force F times the euclidean distance
between s and t:

mg
√

sin2 αf + 2µf sinαf cosαf cosβ + µ2
f cos

2 αf |st|,

where β is the angle between the friction force and the
weight component projected into the plane of the face.
Formally, the DFG shortest path problem is stated

as follows: Given one source point s on a triangulated
polyhedral surface S, an assignment of kinetic friction
coefficients to edges and faces, and an error tolerance
ε > 0; build a structure that allows the computation
of an ε-optimal path (according to the DFG distance
function) from s to any query point t, such that the
path stays on the surface S.

3 A Hierarchy of Shortest Path Problems

Several shortest path problems are reduced to the di-
rectional frictional shortest path problem addressed in
this paper. The most specific shortest path problem
considers the interior of a simple polygon (ISP) [17].
The Euclidean shortest path problem with polygonal
obstacles (EPO) [6] consists of finding shortest paths
in a plane avoiding a set of disjoint simple polygonal
obstacles. This problem generalizes the ISP problem
when the complement of the polygon is considered an
obstacle. A special case of the EPO problem considers
parallel straight line segments (PLS) as obstacles [9].
In a simpler version of the PLS problem, the obstacles
are parallel half-lines (PHL) [18]. Another special case
of the EPO problem consider only polygonal obstacles
with disjoint convex hulls (DCH) [16].
A generalization of the EPO problem consists of find-

ing shortest paths according to the Euclidean metric
on the surface of a (possibly non-convex) polyhedron
[11]. This problem is called the discrete geodesic prob-
lem (DGP). To reduce the EPO problem to the DGP
problem, we construct a surface where each obstacle be-
comes an infinite orthogonal prism whose base is on the
plane. A shortest path on this surface between points in
the plane is fully contained in the plane and avoids all
prisms which corresponds to a shortest path avoiding
obstacles. Another special case of the DGP problem,
is the shortest path problem on the surface of a convex
polyhedron (SCP) [13].
The weighted region problem (WRP) [12] consists of

finding a path in a planar subdivision that minimizes
the total cost according to a weighted Euclidean metric.
The WRP problem generalizes the EPO problem. In
this case, the weights associated with the free space and
obstacles are 1 and +∞, respectively. A special case of
the WRP problem arises when the weights of regions
are 0, 1, or +∞ which has applications to the maximum
concealment problem (MCP).
The DFG problem addressed in this paper generalizes

the DGP problem when there is only one constant force
applied to the particle for the whole polyhedral surface.
In this case, the total work done to move the particle
considers only the weight force. On the other hand, if
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the polyhedral surface is embedded into a single plane,
the only force applied to the particle is the constant fric-
tion on each face, hence, the WRP problem is a special
case of the DFG problem.

4 Geodesic and Optimal Paths

Assuming that each face has a constant kinetic friction
coefficient and a constant slope, the following lemma
states that geodesic paths are piecewise linear. A piece-
wise linear path is a path whose intersection with any
face is the union of disjoint line segments.

Lemma 1 Let f be a face with µf > 0. Let s and t be
points on the interior of f . A subpath from s to t fully
contained on the interior of f is geodesic if and only if
it is a straight line segment.

Proof. If the subpath from s to t is geodesic, then it
must be locally optimal with regards to the DFG dis-
tance function. We assume that the subpath from s to
t is the arc of a differential parametric curve Φ : I → R2

from an open range I ⊂ R into R2 that represents the
plane of face f , where Φ is a function that leads i ∈ I
to a point Φ(i) = (x(i), y(i)) ∈ R2. The tangent vector
Φ′(i) is the vector (x′(i), y′(i)), where x′(i) is the first
derivative of x(i) in i ∈ I.
The length di0,i1 of the arc of the parametric curve Φ

according to the DFG distance function, from Φ(i0) = s
to Φ(i1) = t, where i0, i1 ∈ I is [3]:

di0,i1 =

∣
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∣

∣
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The forces Fxi Vx and Fyi Vy are horizontal and ver-
tical components of the external force Fi, where Vx and
Vy are the unit vectors in the direction of the axes. We
denote by |st| the Euclidean length of the straight line
segment st. Therefore, we have the following:
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where |Φ′(i)| =
√

(x′(i))2 + (y′(i))2 denotes the size
of vector Φ′(i), A is the friction force, and RPN is the
weight and normal resulting force.
The length of the line segment st according to the

DFG distance function is ds,t = |Fx Vx |st|⊕ Fy Vy |st||,
where

|Fx Vx |st|| = − |A| cosβ |st| ,
|Fy Vy |st|| = − |RPN | |st|− |A| sinβ |st| .

Thus, we must show that ds,t ≤ di0,i1 . However, since

|Fx Vx |st|| =
∣

∣
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,

we need only to demonstrate that |Fy Vy |st|| ≤
∣
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Therefore,
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that is, the length of the line segment st is less than or
equal to the length of the arc of any parametric curve
according to the DFG distance function. Thus, the sub-
path represented by this arc is geodesic if and only if it is
a straight line segment. Furthermore, since the geodesic
subpath is a line segment, we can drop our assumption
that the curve Φ is differential. !

Corollary 4.1 Geodesic paths on polyhedral surfaces
according to the DFG distance function are piecewise
linear.

The locus of points t on a face f with constant dis-
tance δ from a source point s, according to the DFG
distance function, consists of a curve defined by the fol-
lowing polar equation: |st| =

δ

mg
√

µ2
f cos

2 αf + 2µf cosαf sinαf cosβt + sin2 αf

,

where βt is the angle between the vector of the force
RPN in the direction of the gradient and the vector of
the friction force A in the direction of the line segment
st. This curve has an oval shape. The curve is a circle
when αf = 0, but it has a degenerated shape when

mg
√

µ2
f cos

2 αf + 2µf cosαf sinαf cosβt + sin2 αf =

0. This only occurs when cosβt = −1. In this case,
we have (µf cosαf − sinαf )2 = 0, that is, µf = tanαf .
We assume that µf (= tanαf to avoid this degenerated
case and to guarantee the strict convexity of the DFG
distance function. This locus is a strong evidence of the
convexity of the DFG function. However, the algebraic
proof 1 of this fact is necessary to guarantee that there
exists a local optimality criterion.
The angle of incidence θ is the acute angle between a

segment of a geodesic path that crosses (incoming ray)
the boundary of face f and a vector perpendicular to
the boundary of f . The angle of refraction θ′ is the
acute angle between a segment of a geodesic path that
crosses (outgoing ray) the boundary of face f ′ and a
vector perpendicular to the boundary of f ′.
A geodesic path must pass through the interior of an

edge e according to a local optimality criterion for the
directional frictional geodesic shortest path problem.

1This proof is presented in appendix B.
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Lemma 2 Let f and f ′ be two faces that share an edge
e. Let s be a point on the interior of f and let t be
a point on the interior of f ′. Let p be a geodesic path
between s and t that passes through only one point x∗

in the interior of e, then x∗ is uniquely defined.

Proof. The proof consists of solving a minimiza-
tion problem on the length of a path from a point
s(0,−y0, z0) on face f to a point t(x1, y1, z1) on face
f ′ passing through only one point x∗ in edge e = f ∩ f ′

according to the DFG distance function (see Fig. 2).
The faces f and f ′ are defined by points s, t, and by
the edge e. The points in the edge e are projected into
the y axis and they have height equal to (ax+ b), where
a and b are constants.

e

β0 s (0, -y0, z0)

q0

f’

f

q1
θ

θ’

x* (x, 0, z)

β
1

t (x1, y1, z1)

Figure 2: Local optimality criterion.

We must find the minimum point x∗ in the following
function 2 with a single real variable x:

√

µ2
f cos2 αf + 2µf cosαf sinαf cos βfx + sin2 αf |sx∗|+

√

µ2
f ′ cos2 αf ′ + 2µf ′ cosαf ′ sinαf ′ cosβf ′

x
+ sin2 αf ′ |x∗t|,

where µf , µf ′ are friction coefficients; αf ,αf ′ are slope
angles between faces and the horizontal plane; and
βfx ,βf ′

x
are the angles between the friction force A in

the direction of the movement and the resulting force
RPN in the direction of the gradient for each face, re-
spectively. Note that the angles 3 βfx and βf ′

x
change

according to x.
The convexity of the DFG distance function between

points on the same face guarantees that there exists a
single point xs (xt) in e whose distance from s (to t) is
minimum. Therefore, the point x∗ must be in the range
[xs, xt]. The determination of the minimum point xs is
achieved using the first derivative of the DFG distance
function from s to x∗. Analogously, we find the point
xt. In appendix C, we get the following expression that

2We prove the strict convexity of this function in appendix B.
3Details about the angles βfx and βf ′

x
are found in appendix A.

specifies xs in function of the angle of incidence θs in
edge e, where cs0 , . . . , cs4 are constants:

cs0 + cs1 sin θs + cs2 sin
2 θs + cs3 sin

3 θs + cs4 sin
4 θs = 0.

The point x∗ is uniquely specified by the first deriva-
tive of the DFG function from s to x∗ added to the DFG
function from x∗ to t (see Exp. 5):

c5(cosβfx∗ )
′ |sx∗|+ (2c5 cosβfx∗ + c6) (|sx∗|)′

√

2c5 cosβfx∗ + c6
+

c7(cosβf ′
x∗
)
′ |x∗t|+ (2c7 cosβf ′

x∗
+ c8) (|x∗t|)′

√

2c7 cosβf ′
x∗

+ c8
= 0,

where c5 = µf cosαf sinαf , c6 = µ2
f cos

2 αf + sin2 αf ,

c7 = µf ′ cosαf ′ sinαf ′ , and c8 = µ2
f ′ cos2 αf ′ + sin2 αf ′ .

We simplify the equation above, seeking an equivalent
expression in function of angles θ and θ′ (see Exp. 6):

sin θ(c5 cos βfx∗ + c6) + c9
√

2c5 cos βfx∗ + c6
+

sin θ′(c7 cos βf ′
x∗

+ c8) + c10
√

2c7 cos βf ′
x∗

+ c8
= 0,

(1)

where c9 = c5c4√
1+a2|sq′| , q′ is the intersection of the

straight line passing by s in the same direction of the
vector of the force RPN with the edge e, c10 is a constant
analogous to c9 related to face f ′. Note that cosβfx∗ =
± cosψ cos θ± sinψ sin θ and cosβf ′

x∗
= ± cosψ′ cos θ′±

sinψ′ sin θ′, where ψ and ψ′ are constants. Therefore,
the algebraic expression above uniquely specifies x∗. !
The critical angle θf,f ′ for e consists of the angle of

incidence when the angle of refraction θ′ = π
2 . In this

case, the local optimality criterion (see Eq. 1) has the
following form:

sin θf,f ′(c5(± cosψ cos θf,f ′ ± sinψ sin θf,f ′) + c6) + c9
√

2c5(± cosψ cos θf,f ′ ± sinψ sin θf,f ′) + c6
+

±c7 sinψ′ + c8 + c10√
2c7 sinψ′ + c8

= 0.

Then, analogously to θs and θt, the critical angle θf,f ′

is given by the expression

cf,f ′
0
+ cf,f ′

1
sin θf,f ′ + cf,f ′

2
sin2 θf,f ′ +

cf,f ′
3
sin3 θf,f ′ + cf,f ′

4
sin4 θf,f ′ = 0,

where cf,f ′
i
are constants for i = 0, . . . , 4 (see Eq. 7).

A geodesic path critically uses part of an edge e when
it reaches the edge e at the critical angle θf,e at a point
q interior to e, travels along edge e for some distance,
and leaves edge e into the interior of f ′ at the critical
angle θe,f ′ at a point r interior to e (see Fig. 3(a)).
A geodesic path is critically reflected by e from face

f when it is incident to edge e at critical angle θf,e at a
point q interior to e, travels along edge e for some dis-
tance, and exits edge e back into face f at a point r in-
terior to e, leaving the edge at angle θe,f (see Fig. 3(b)).
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Figure 3: Geodesic paths on an edge.

We generalize Lemma 2 to consider critical angles,
that is, paths that can either critically use part of an
edge or be critically reflected. In this case, we have a
two-variable minimization problem.

Lemma 3 A geodesic path crosses edge e = f ∩ f ′ in
one of two ways: either it intersects edge e at one cross-
ing point and satisfies the local optimality criterion at
that point, or it hits edge e at a critical angle θf,e, trav-
els along the edge for some distance, and exits the edge
into the other face (into the same face) at a critical an-
gle θe,f ′ (θe,f ).

Proof. The proof consists of solving a convex (non-
linear) programming problem [10] in two real variables x
and x′, where x and x′ are the coordinates of the points
q and r at the x axis, respectively (see Fig. 3). Our goal
is to minimize the function d(x, x′) =
√

µ2
f cos2 αf + 2µf cosαf sinαf cos βfx + sin2 αf |sx∗|+

(µe cosαe − sinαe) |x∗x′∗|+
√

µ2
f ′ cos2 αf ′ + 2µf ′ cosαf ′ sinαf ′ cosβf ′

x
+ sin2 αf ′ |x′∗t|

subject to g(x, x′) = x − x′ ≤ 0. The Karush-
Kuhn-Tucker conditions [8] imply the three relations
∇d(x, x′) + l∇g(x, x′) = 0, l g(x, x′) = 0, l ≥ 0, where
∇d(x, x′) and ∇g(x, x′) are gradient vectors and l is
the Lagrange multiplier. Therefore, if l = 0 we have

∇d(x, x′) =
(

∂d(x,x′)
∂x

, ∂d(x,x′)
∂x′

)

= 0, otherwise,

c5(cosβfx)
′ |sx|

√

c6 + 2c5 cosβfx
+

√

c6 + 2c5 cosβfx (|sx|)
′

+

√

1 + a2(µe cosαe − sinαe) = 0 and

c7(cosβf ′
x′
)
′ |x′t|

√

c8 + 2c7 cosβf ′
x′

+
√

c8 + 2c7 cosβf ′
x′

(|x′t|)
′

−

√

1 + a2(µe cosαe − sinαe) = 0.

Simplifying in terms of critical angles θf,e and θe,f ′ ,

sin θf,e(c6 + c5 cos βfx) + c9
√

c6 + 2c5 cosβfx

+ (µe cosαe − sinαe) = 0 and

sin θe,f ′(c8 + c7 cosβf ′
x′
) + c10

√

c8 + 2c7 cosβf ′
x′

− (µe cosαe − sinαe) = 0.

However, the Lagrange multiplier is not zero if and only
if g(x, x′) = 0, that is, x = x′. In this case, the path
crosses the edge at the single crossing point and satisfies
the following local optimality criterion:

(c6 + c5 cos βfx) sin θ + c9
√

c6 + 2c5 cos βfx

+
(c8 + c7 cos βf ′

x′
) sin θ′ + c10

√

c8 + 2c7 cos βf ′
x′

= 0.

Depending on the Lagrange multiplier, a geodesic
path either intercepts the edge at a single point (l (= 0),
or travels along the edge and exits at critical angle
θe,f ′ (l = 0) according to the local optimality criterion.
There is a similar proof for critically reflected paths. !
The intersection of a geodesic path p with an edge e

is a set, probably empty, of points and segments. These
points are called crossing points of the edge e for path
p and the segments, shared segments for e and p.
The convexity of the DFG function uniquely specifies

a geodesic path that intercepts an edge sequence.

Lemma 4 If p is a geodesic path from a point s to a
point t that intercepts the edge sequence E = (e1, . . . , ek)
with ei (= ei+1 (so that there are no shared segments),
then p is the unique geodesic path connecting s to t.

Proof. We show that the function that gives the
DFG length of the path from point s to point t inter-
cepting the edge sequence E is a strictly convex function
of the crossing points at each edge (see Fig. 4).

s

e

e

e

e
t

1

2

3

4

q
q

q

q4

3

2

1

Figure 4: A path intercepting edge sequence E.

The DFG function of the length of the path from
point s to point t intercepting the edge sequence E is
given by d(q1, . . . , qk) = d1 +

∑k−1
i=1 di+1 + dk+1 =

√

µ2
1

cos2 α1 + 2µ1 cos α1 sinα1 cos β1 + sin2 α1 |sq1| +

k−1
∑

i=1

√

µ2
i+1

cos2 αi+1 + 2µi+1 cos αi+1 sinαi+1 cos βi+1 + sin2 αi+1 |qiqi+1|

+

√

µ2
k+1

cos2 αk+1 + 2µk+1 cosαk+1 sinαk+1 cos βk+1 + sin2 αk+1 |qkt|,

where qi is the crossing point at edge ei. Our goal
is to show that d(q1, . . . , qk) is a strictly convex func-
tion of the crossing points at each edge. According to
theorems in appendix B, the functions d1 and dk+1 are
strictly convex. The function di+1 is strictly convex
in two scalar variables that specify the points qi and
qi+1. This follows from the strict convexity of this func-
tion when one of the points qi or qi+1 is fixed. Thus,
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the intersection of an orthogonal plane to the horizontal
plane (parallel to x or y axis) with this function implies
a strictly convex curve. Generalizing the direction of
the orthogonal plane, then the function in two variables
is strictly convex.
Since function d(q1, . . . , qk) is a summation of strictly

convex functions, then d(q1, . . . , qk) is strictly convex.
Therefore, function d(q1, . . . , qk) has a unique global
minimum, and any local minimum must be global. Since
p is a local minimum, it is also the unique global mini-
mum intercepting the edge sequence E. !

A critical point of entry of a geodesic path p into face
f consists of a point q (the closer endpoint of a shared
segment to the source s) interior to an edge e = f ∩ f ′

when p hits q from the side of f . Similarly, a critical
point of exit of path p into face f is a point r interior to
(f ∩ f ′) (the further endpoint of a shared segment from
the source s) when p goes from r into face f .
Let v and v′ be consecutive vertices encountered in

the list of points describing a geodesic path p. The char-
acterization of geodesic paths implies that the structure
of the subpath of p between v and v′ is an alternate
list of crossing points and shared segments. A geodesic
path p may be uniquely specified by a list of vertices,
edges, and faces whose interiors contain a portion of p.
Edges and faces may be repeated in this list.
Finally, we have the following characterization of

geodesic and shortest paths on polyhedral surfaces ac-
cording to the DFG function:

Theorem 5 The general form of either a geodesic or a
shortest path is a piecewise linear path that goes through
an alternating sequence of vertices, (possibly empty)
edge sequences, and shared segments, such that the path
satisfies the local optimality criterion at each edge along
any edge sequence and at the endpoints of each shared
segment.

Proof. Follows from Lemmas 2 and 3. !

5 Conclusions

We performed the characterization of shortest paths on
polyhedral surfaces according to the DFG distance func-
tion. We derived the local optimality criterion by show-
ing the strict convexity of this distance function. The
DFG shortest path problem generalizes a hierarchy of
shortest path problem [11, 12]. This implies in a sin-
gle framework to address several shortest path problems
and in the versatility necessary to consider several ap-
plications. Furthermore, this framework finds geomet-
ric structures embedded on polyhedral surfaces (i.e., a
shortest path Voronoi diagram [14] )that allows the so-
lution of proximity problems (closest pair of points, all
nearest neighbors, minimum expanding tree) on poly-
hedral surfaces according to the DFG distance.
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