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Planar Pixelations and Shape Reconstruction

Brandon Rowekamp∗

Abstract

Given a PL (piecewise linear) set S in the plane R2 we
consider the set Pε(S) consisting of all pixels of size ε
that touch S. This pixelation Pε(S) resembles the orig-
inal set, but may not well approximate various impor-
tant invariants of the original set such as Betti numbers,
perimeter, curvature measures. We describe an algo-
rithm that associates to the pixelation Pε(S) a PL-set
Pε(S) which approximates S in a very strong sense.

1 Introduction

The ε-pixelation of the Euclidean plane is the decom-
position determined by the lines

x ∈ εZ and y ∈ εZ.

An ε-pixel is a square of the form

[ε(i− 1), εi]× [ε(j − 1), εj], i, j ∈ Z

with center located at

C[i, j] :=
(2i− 1

2
ε,

2j − 1
2

ε
)

(1.1)

For any compact subset of the plane we define its ε-
pixelation to be the union of all the ε-pixels that touch
S. We denote it by Pε(S).

Figure 1: A pixelation of an angle

∗Department of Mathematics, University of Notre Dame,
browekam@nd.edu

Roughly speaking, the main goal of this paper is to
algorithmically associate to Pε(S) a planar PL-region
Pε(S) that approximates S very well as ε ↘ 0. More
specifically, we would like to recover in the limit basic
geometric and topological invariants of S such as, area,
perimeter, curvature (measures) and Betti numbers.

While Pε(S) converges to S in the Hausdorff distance,
this notion of convergence fails to recover even the most
stable of invariants. For example lengths from the pixe-
lation may not converge to the corresponding lengths in
the original set. Additionally, topological information
such as the Betti numbers may be lost at all resolutions
ε.

For example, in Figure 1 we have depicted a pixela-
tion of the angle A formed by two segments of slopes 2

3
and 1 that have a common endpoint at the origin. The
homotopy type of this pixelation is independent of the
size of the pixel, and as seen in Figure 1, b1

(
Pε(A)

)
= 2,

∀ε > 0. The situation with geometric invariants such as
perimeter or curvature is much worse (even in the case of
a line the total curvature will explode while the perime-
ter will not converge to the correct length). Therefore
the pixelation itself is not a reasonable approximation
of the original shape. The goal of this paper is to gen-
erate algorithmically a better approximation using only
information from the pixelation.

2 Basic Results

Proofs for all claims in this section are omitted due to
lack of space. They are publicly available on the au-
thor’s website1.

Given the ε-pixelations of a PL subset of the plane,
we would like to construct a sequence of PL approxi-
mations of the original set which converge in a strong
sense to the original set. We delay a precise definition of
the notion “strong convergence” until the main result.
For now it suffices to say that we seek an approximation
which recovers the homotopy type of the original set, as
well as geometric invariants such as the perimeter, area
and the curvature measures of the boundary.

As we have seen in the introduction, the pixelation
itself will not recover these invariants. A better approx-
imation is described explicitly in the Algorithm section
given that the original set is PL2. The remainder of

1http://www.nd.edu/~browekam
2We are currently working to extend this technique to semi-
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this section describes results about pixelations which
motivated the approximation which is described later.

Throughout this discussion we will use the concepts
of column and stack. The column of a pixelation at
the x-value x0 is simply the union of pixels from Pε(S)
which intersect the line {x = x0}. A stack is a connected
component of a column (that is to say, a series of pixels
“stacked” on top of each other with no gaps).

An elementary set is a region of the following form:

{(x, y) ∈ R2 : x ∈ [a, b], β(x) ≤ y ≤ τ(x)}.

where β and τ are continuous piecewise C2 functions
defined on [a, b] with the property that β(x) ≤ τ(x) for
all x ∈ [a, b].

Proposition 1 If S is an elementary set, then it is
contractible and Pε(S) is also contractible for every res-
olution ε.

Therefore, the pixelation of an elementary set has the
same homotopy type as the elementary set itself. We
will approximate elementary sets by connecting points
along the tops and bottoms of the stacks that make up
their pixelations. To ensure convergence of perimeter
and total curvature we will connect points from about
every σ-th column, where σ is a number determined by
ε (this number is explicitly shown in the algorithm). If σ
satisfies certain constraints (see (3.1)), then this method
of approximation will recover the desired invariants.

Figure 2: This approximation of an elementary set is
the region outlined by the black line.

As suggested by Figure 1, for non elementary sets
there is no guarantee of convergence in homotopy type.
Therefore for the approximation of a general piecewise
linear set we must determine which cycles in the pixe-
lation come from the original shape, and which cycles
are artifacts of the pixelation process. Intuitively these

algebraic subsets of the plane.

fake cycles must be located very close to columns that
undergo a change in the number of their stacks (since
fake cycles will have small area). We define the function
nε : R \ εZ→ Z≥0, where

nε(x0) = # of stacks of Pε(S) in the column at x0.

A point x0 ∈ R \ εZ is called a jumping point of nε if

nε(x0 + ε) 6= nε(x0).

A column over a jumping point is called a jumping
column. From investigating examples of pixelations,
we expect topological noise to occur “near” jumping
points. The following theorem gives a precise sense of
how “near” topological noise must be to jumping points.

Proposition 2 If S is a generic piecewise linear set,
i.e., no two of its vertices lie on the same vertical line.
Then the following hold.

1. There is an integer k = kS depending only on S
such that any fake cycles of Pε(S) is within at most
k-columns from a jumping column.

2. The function S 3 (x, y) h7→ x ∈ R is a strati-
fied Morse function in the sense of [7] and for any
jumping point x0 of nε there exists a critical value
xh0 of h such that |x0 − xh0 | < kε.

In practical terms this proposition states that the
fake cycles only occur in narrow vertical strips of the
plane containing the jumping points of nε. Moreover
the jumping points of nε cannot be too far from the
critical values of the function h. Thus we can assume
that any cycle which occurs close to a jumping column
is fake and so our approximation should fill it in (the
meaning of “close” here will be explicitly shown in the
algorithm). We can fill these fake cycles somewhat care-
lessly, since they take up a very small area of the plane
for small resolutions. We call the columns which can
contain fake cycles “noise” and cover each connected
component of Pε(S) within in these columns by rectan-
gles.

So far we have a way to approximate two situations.
The first is for elementary regions, and the second is for
noise columns that accumulate near the critical values
of h. Away from the critical values of h the set S is a
disjoint union of elementary sets. Therefore these two
approximation techniques suffice to approximate the en-
tire set.

The next section gives an explicit algorithm for gener-
ating an approximation of a PL set from its pixelations.

3 The algorithm

The input for this algorithm is a pixelation. We encode
a pixelation by an m × m matrix A with 0, 1 entries,



CCCG 2011, Toronto ON, August 10–12, 2011

Figure 3: An example of approximating in noise
columns (near jumping points of nε).

where aij = 1 if and only if the pixel with center C[i, j]
belongs to our pixelation. We think of the parameter m
as defining a m ×m subdivision of a computer screen,
consisting of squares of size ε := 1

m . Define

σ(ε) = bmρc,

where ρ is a fixed rational number ρ ∈ ( 1
2 , 1). Note that

lim
ε↘0

ε(σ(ε))2 =∞, lim
ε↘0

εσ(ε) = 0. (3.1)

We denote by P (A) the pixelation determined by the
matrix A. The output of the algorithm will be a PL set
Pε(A) that decomposes in a canonical fashion as a finite
union of trapezoids with vertical bases. We will refer to
such regions as polytrapezoids. We allow for degenerate
trapezoids, such as points, segments, or triangles.

The algorithm uses several basic subroutines. The
first one is the the subroutine stack. Its input is a list

C = C1, . . . , Cm, Ci = 0, 1,

which encodes a column of the pixelation P (A). The
output of stack is a list of nonnegative integers

n(C); b1 ≤ t1 < b2 ≤ t2 < · · · < bn(C) ≤ tn(C),

where n(C) is the number of stacks in the column en-
coded by C, and the location of the bottom and top
pixel in the j-th stack is determined by the integers
bj , tj . More formally

Ck = 1⇐⇒ ∃1 ≤ j ≤ n(C) : bj ≤ k ≤ tj .

If C = Ci, the i-th column of P (A), i.e.,

Ci = ai,1, . . . , ai,m

then we will denote the output stack(Ci) by

ni, bi,1 ≤ ti,1 < · · · < bi,ni
≤ ti,ni

.

A number 1 ≤ i ≤ m− 1 is called a jump point if

ni 6= ni+1.

The next subroutine that we need is called jump. Its in-
put is an integer k ∈ [1,m) and the output is an integer
jk = jump(k) defined as follows. If{

i ∈ [k,m) ∩ Z; i is a jump point
}

= ∅,

then we set
jump(k) := m+ 1.

Otherwise

jump(k) = min
{
i ∈ [k,m) ∩ Z; i is a jump point

}
.

The noise region is determined by a finite collection of
intervals

[`1, r1], . . . , [`α, rα] ⊂ [1,m]

where the integers `k, rk are determined inductively as
follows.

`1 = max
(
jump(1)− 2σ(ε), 1

)
,

r1 = min
(
m, jump(1) + 2σ(ε)

)
.

Suppose that `1, r1, . . . , `j , rj are determined. If
jump(rj) > m we stop. Otherwise we set

`j+1 = max
(
jump(rj)− 2σ(ε), 1

)
,

rj+1 = min
(
m, jump(rj) + 2σ(ε)

)
.

The intervals [`1, r1], . . . , [`α, rα] may not be disjoint,
but their union is a disjoint union of intervals

[a1, b1], . . . , [aJ , bJ ], bi < ai+1.

The intervals [aj , bj ], 1 ≤ j ≤ J are the noise intervals.
The intervals

[1, a1], [b1, a2], . . . , [bJ−1, aJ ], [bJ ,m]

are the regular intervals.
The heart of the algorithm consists of two procedures,

one for dealing with the noise intervals and the other for
dealing with the regular intervals. These procedures will
return a number of polytrapezoids,

First some notation. Given a collection of points

B0, T0, . . . , BN , TN ∈ R2

such that

x(Bi) = x(Ti), y(Bi) ≤ y(Ti), ∀i = 0, . . . , N,

x(Bj−1) < x(Bj), ∀1 ≤ j ≤ N,

we denote by polygon(B0, T0, . . . , BN , TN ) the region
surrounded by the simple closed PL-curve obtained as
the union of line segments

[B0, B1], . . . , [BN−1, BN ],
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[BN , TN ], . . . , [T1, T0], [T0, B0].

Note that each of the quadrilaterals Bi−1, Bi, Ti, Ti−1 is
a (possibly degenerate) trapezoid with vertical bases.

Consider first the regular intervals. Given a regular
interval I := [p, q] we observe that the number of stacks
ni is independent of i ∈ [p, q]. We denote this shared
number by n = n(I).

We construct inductively a sequence of numbers i0 <
· · · < iN as follows:

• We set i0 = p.

• If q − p < 2σ(ε) we set N = 1 and i1 = q.

• If i0, . . . , ik are already constructed, then, if q −
ik < 2σ(ε) we set N = k + 1 and ik+1 = q, else
ik+1 = ik + σ(ε).

Note that if q− p > σ(ε), then N ≥ 1, i0 = p, iN = q
and

N = 1 if q − p < σ(ε).

We have

stack(Cik) = n, bik,1, tik,1, . . . , bik,n, tik,n.

For j = 1, . . . ,n, and k = 0, . . . , N we denote by Bk,j
the center of the ε-pixel corresponding to the element
entry bik,j in the column Cik . Similarly we denote by
Tk,j the center of the pixel corresponding to the entry
tik,j of the column Cik . For 1 ≤ j ≤ n(I), we set

Pj(I) := polygon(B0,j , T0,j , . . . , BN,j , TN,j).

Define

P(I) =
n(I)⋃
j=1

Pj(I), Preg :=
⋃

I regular interval

P (I).

Suppose now that I = [p, q] is a noise interval. We
modify the column

Cp = ap,1, . . . , ap,m

to a column
C ′p = a′p,1, . . . , a

′
p,m,

by setting

a′p,k :=


1, if

∑q
i=p ai,k > 0

0, if
∑q
i=p ai,k > 0.

We apply the subroutine stack to the new column C ′pand
the output is

stack(C ′p) = n(I), b1 ≤ t1 < · · · < bn ≤ tn.

For j = 1, . . . ,n(I) we set

B0,j := C[p, bj ], T0,j := C[p, tj ],

B1,j := C[q, bj ], T0,j := C[q, tj ],

where C[i, j] is defined by (1.1). Next, for j =
1, . . . ,n(I) we define the rectangle

Rj(I) := polygon(B0,j , T0,j , B1,j , T1,j),

and we set

R(I) =
n(I)⋃
j=1

Rj(I), Pnoise :=
⋃

I noise interval

R(I).

The output of the algorithm is the polytrapezoid

Pε(A) := Pregular ∪ Pnoise.

4 The main result

We wish to prove that the above algorithm produces an
approximation of the original set which preserves the
Euler characteristic, perimeter of the boundary, total
curvature of the boundary and other important invari-
ants. One way to precisely state this is to use the con-
cept of normal cycle of a (subanalytic) set. The defini-
tion of a normal cycle uses basic concepts of geometric
measure theory (for an introduction to the subject see
[4, 8]).

Recall that a 1-current on a smooth manifold is an
element of the dual space of compactly supported dif-
ferential 1-forms. Thus, a current is an object T which
associates a number T (ω) to a compactly supported 1-
form ω. The number T (ω) can be thought of as the in-
tegral of ω over the current ω. For example an oriented
smooth arc is a 1-current which acts through integra-
tion. The mass of a current T is the quantity

sup
{
T (ω) : ω is a 1-form, sup

x
||ωx|| ≤ 1

}
,

where ‖ − ‖ denotes the Euclidean norm on the dual
of R2. The mass of a 1-current defined by an oriented
compact arc is equal to its length.

The normal cycle of of a planar PL set S is 1-current
NS living on the unit tangent sphere bundle of R2. It
consists of a finite collection of compact, oriented real
analytic arcs with multiplicities such that the result-
ing singular chain is a cycle. Each of these arcs is a
Legendrian curve with respect to the canonical contact
structure on the unit tangent sphere bundle. This cycle
is uniquely characterized by the Morse theoretic prop-
erties of the restrictions to S of the linear functions on
R2. Roughly speaking, the normal cycle is obtained as
follows.

Denote by Tε(S) the tube of radius ε around S,

Tε(S) :=
{
p ∈ R2; dist (p, S) ≤ ε)

}
.

This is a domain in the plane and its normal cycle is the
current NTε(S) defined the graph of the Gauss map of
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the boundary. If we canonically identify the unit sphere
bundle with the Cartesian product S1 × R2, then the
graph of the Gauss map can be identified with the col-
lection of points (ν(p), p) ∈ S1 × R2, where p ∈ ∂Tε(S)
and ν(p) is the outer unit normal vector to ∂Tε(S) at p.
Then

NS = lim
ε↘0

NTε(S).

For a precise definition of the normal cycle we refer to
[1, 2, 6, 9, 10]. In particular, [9] gives a beautiful de-
scription of the normal cycle, together with specific ex-
amples of normal cycles and how to retrieve geometric
information from them.

In this setting, we can show the following theorem:

Theorem 3 Suppose S is a generic PL subset of R2,
i.e., no two vertices lie on the same vertical line. Fix a
function σ : R+ → Z+ satisfying (3.1).

Let Pε(S) be the PL approximation of S constructed
via the Algorithm described above. Then the normal cy-
cle NPε(S) of Pε(S) converges weakly to the normal cy-
cle NS of S as ε→ 0.

Proof: Due to lack of space we will omit most of the
details. The complete proof is publicly available on the
author’s website3. We confine ourselves to outlining the
most salient features of the proof.

The theorem is largely a consequence of the approxi-
mation theorem for normal cycles proved by Joseph Fu
in [5]. This theorem implies the following result.

Proposition 4 Suppose S is a PL subset of the plane
and for each ε ∈ (0, 1) Lε(S) is a PL set such that the
following hold

1. There is a compact subset K of the plane such that
Lε(S) ⊂ K for all ε ∈ (0, 1).

2. There is a M > 0 such that

mass (NLε(S)) < M, ∀ε ∈ (0, 1).

3. For almost every half plane H,

lim
ε↘0

χ(H ∩ Lε(S)) = χ(H ∩ S),

where χ denotes the Euler characteristic.

Then the normal cycles NLε(S) converge weakly to the
normal cycle NS.

The bulk of the proof consists of verifying all the con-
ditions in the above theorem for Pε(S). Note that the
first condition follows immediately from the construc-
tion of Pε(S).

The second condition is a bit more difficult. If X
is a PL set, then the mass of its normal cycle can be

3http://www.nd.edu/~browekam

expressed in terms of its perimeter and its total curva-
ture; see [9]. The conditions (3.1) allow us to produce
upper bounds on the perimeter and the total curvature
of Pε(S) that are independent of ε. Condition 2 follows
immediately from these upper bounds.

The third condition is the most challenging. To verify
it we associate to each approximation Pε(S) a graph Γε,
and a key observation is the fact that for ε sufficiently
small the graph Γε is isomorphic to the Reeb graph, [3,
VI.4], of the map h : S → R defined by the projection
onto the x-axis. As a matter of fact, our entire algorithm
can be viewed as a discretization of the Morse theory of
the above map. ut

5 Conclusion

Weak convergence in normal cycles implies the conver-
gence of Euler characteristic, perimeter, curvature. This
implies that the approximation Pε(S) created by our al-
gorithm converges in a very strong way to the original
set, recovering information that the pixelation destroys.

A simple example of the approximation algorithm ap-
plied to the case of two intersecting line segments is
shown in the Figure 4. Note the rectangle around the
point of intersection indicating a noise region.

Figure 4: An example of Lε(S) where S is the union of
two intersecting lines.

We note that the current approximation technique
only applies to piecewise linear sets. This is because
the construction relied on Proposition 2, which is only
true for PL sets. In more general cases, such as semi-
algebraic sets, fake cycles can stray further away from
the singular points of S. (Think of the pixelation of a
cusp.) Therefore more of the approximation will need
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to be devoted to noise intervals in this case. We can
show4 that with a cleverer choice of σ, the general ap-
proximation method still works for semi-algebraic sets.
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