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Development of Curves on Polyhedra
via Conical Existence∗
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Abstract

We establish that certain classes of simple, closed,
polygonal curves on the surface of a convex polyhedron
develop in the plane without overlap. Our primary proof
technique shows that such curves “live on a cone,” and
then develops the curves by cutting the cone along a
“generator” and flattening the cone in the plane. The
conical existence results support a type of source unfold-
ing of the surface of a polyhedron, described elsewhere.

1 Introduction

Nonoverlapping development of curves plays a role in
unfolding polyhedra without overlap [2]. Any result
on simple (non-self-intersecting) development of curves
may help establishing nonoverlapping surface unfold-
ings. One of the earliest results in this regard is [7],
which proved that the left development of a directed,
simple, closed convex curve does not self-intersect. The
proof used Cauchy’s Arm Lemma. Here we extend
this result to a wider class of curves without invoking
Cauchy’s lemma. Our results support a “source unfold-
ing” based on these curves, described in [5].

Development. Let C be a simple, closed, polygonal
curve on the surface of a convex polyhedron P. For any
point p ∈ C, let L(p) be the total surface angle incident
to p at the left side of C, and R(p) the angle to the
right side. The left development of C with respect to
x ∈ C is an isometric drawing Cx of C in the plane,
starting from x, such that the angle to the left of Cx at
every point in the plane is L(p). The right development
is defined analogously. The left and right developments
of a curve are different if C passes through one or more
vertices of P . And in general the development depends
upon the cut point x.

Curve Classes. To describe our results, we introduce
a number of different classes of curves on convex poly-
hedra, which exhibit different behavior with respect to
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living on a cone. Define a curve C to be convex (to the
left) if the angle to the left is at most π at every point
p: L(p) ≤ π; and say that C is a convex loop if this
condition holds for all but one exceptional loop point x,
at which L(x) > π is allowed. Analogously, define C
to be a reflex curve if the angle to one side (we consis-
tently use the right side) is at least π at every point p:
R(p) ≥ π; and say that C is a reflex loop if this con-
dition holds for all but an exceptional loop point x, at
which R(x) < π.

The loop versions of these curves arise naturally in
some contexts. For example, extending a convex path
on P until it self-intersects leads to a convex loop.

Summary of Results.

1. Every convex curve C left-develops to Cx without
intersection, for every cut point x. This is a new
proof of the result in [7].

2. There are convex loops C such that, for some x,
the left-development Cx self-intersects. However,
for every convex loop, there exists a y for which Cy

left-develops without overlap.

3. Every reflex curve C right-develops to Cx without
intersection, for every cut point x.

4. Every reflex loop C whose other side is convex
right-develops to Cx without intersection, for ev-
ery cut point x.

These results may be combined to reach conclusions
about the left- and right-developments of the same
curve: Every convex curve C that passes through at
most one vertex, both left-develops, and right-develops
without overlap, for every cut point x.

Living on a Cone. Our primary proof technique relies
on the notion of a curve C “living on a cone,” which
is based on neighborhoods of C. An open region NL

is a vertex-free left neighborhood of C to its left if it
includes C as its right boundary, and it contains no
vertices of P. In general C will have many vertex-free
left neighborhoods, and all will be equivalent for our
purposes. We say that C lives on a cone to its left if
there exists a cone Λ and a neighborhood NL so that



23rd Canadian Conference on Computational Geometry, 2011

C ∪ NL may be embedded isometrically onto Λ, and
encloses the cone apex a.

A cone is an unbounded developable surface with cur-
vature zero everywhere except at one point, its apex,
which has total incident surface angle, called the cone
angle, of at most 2π. Throughout, we will consider a
cylinder as a cone whose apex is at infinity with cone
angle 0, and a plane as a cone with apex angle 2π. We
only care about the intrinsic properties of the cone’s
surface; its shape in R3 is not relevant for our purposes.
So one could view it as having a circular cross section,
although we will often flatten it to the plane.

We should remark that the cone on which a curve C
lives has no direct relationship (except in special cases)
to the surface that results from extending the faces of
P crossed by C.

a

C

ΛL

g

x
NL

Figure 1: A 4-segment curve C which lives on cone ΛL

to its left. One possible NL is shown, and a generator
g = ax is illustrated.

To say that C∪NL embeds isometrically into Λ means
that we could cut out C∪NL and paste it onto Λ with no
wrinkles or tears: the distance between any two points
of C ∪ NL on (C ∪ NL) ∩ P is the same as it is on
(C ∪ NL) ∩ Λ. See Figure 1. We say that C lives on a
cone to its right if C ∪NR embeds isometrically on the
cone, where NR is a vertex-free right neighborhood of
C such that the cone apex a is inside (the image of) C.
We will call the cones to the left and right of C, ΛL and
ΛR respectively. We will see that all four combinatorial
possibilities occur: C may not live on a cone to either
side, it may live on a cone to one side but not to the
other, it may live on different cones to its two sides, or
live on the same cone to both sides.

Cone Generators and Visibility. A generator of a cone
Λ is a half-line starting from the apex a and lying on
Λ. A curve C that lives on Λ is visible from the apex
if every generator meets C at one point. Although it is
possible for a curve to live on a cone but not be visible
from its apex, when we can establish visibility from the

apex, then cutting C at any point x ∈ C will develop
Cx without overlap.

2 Preliminary Tools and Lemmas

C partitions P into two half-surfaces. We call the left
and right half-surfaces PL and PR respectively, or P if
the distinction is irrelevant. We view each half-surface
as closed, with boundary C.

Curvature. The curvature ω(p) at any point p ∈ P is
the “angle deficit”: 2π minus the sum of the face angles
incident to p. The curvature is only nonzero at vertices
of P; at each vertex it is positive because P is convex.
The curvature at the apex of a cone is similarly 2π minus
the cone angle.

Define a corner of curve C to be any point p at which
either L(p)6=π or R(p)6=π. Let c1, c2, . . . , cm be the cor-
ners of C, which may or may not also be vertices of
P. C “turns” at each ci, and is straight at any non-
corner point. Let αi = L(ci) be the surface angle to
the left side at ci, and βi = R(ci) the angle to the right
side. Also let ωi = ω(ci) to simplify notation. We have
αi + βi + ωi = 2π by the definition of curvature. These
definitions will be used to further detail the relation-
ships among the curve classes in Section 5.

The Gauss-Bonnet Theorem. We will employ this
theorem in two forms. The first is that the total curva-
ture of P is 4π: the sum of ω(v) for all vertices v of P is
4π. It will be useful to partition the curvature into three
pieces. Let ΩL(C) = ΩL be the total curvature strictly
interior to PL, ΩR the curvature to the right, and ΩC

the sum of the curvatures on C (which is nonzero only
at vertices of P). Then ΩL + ΩC + ΩR = 4π.

The second form of the Gauss-Bonnet theorem relies
on the notion of the “turn” of a curve. Define τL(ci) =
τi = π−αi as the left turn of curve C at corner ci, and
let τL(C) = τL be the total (left) turn of C, i.e., the
sum of τi over all corners of C. Thus a convex curve
has nonnegative turn at each corner, and a reflex curve
has nonpositive turn at each corner. Then τL + ΩL =
2π, and defining the analogous term to the right of C,
τR + ΩR = 2π.

Alexandrov’s Gluing Theorem. In our proofs we use
Alexandrov’s theorem [1, Thm. 1, p. 100] that gluing
polygons to form a topological sphere in such a way
that at most 2π angle is glued at any point, results in a
unique convex polyhedron.

Vertex Merging. We now explain a technique used by
Alexandrov, e.g., [1, p. 240]. Consider two vertices v1
and v2 of curvatures ω1 and ω2 on P, with ω1+ω2 < 2π,
and cut P along a shortest path γ(v1, v2) joining v1 to
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v2. Construct a planar triangle T = v̄′v̄1v̄2 such that its
base v̄1v̄2 has the same length as γ(v1, v2), and the base
angles are equal to 1

2ω1 and respectively 1
2ω2. Glue

two copies of T along the corresponding lateral sides,
and further glue the two bases of the copies to the two
“banks” of the cut of P along γ(v1, v2). By Alexandrov’s
Gluing Theorem, the result is a convex polyhedral sur-
face P ′. On P ′, the points v1 and v2 are no longer ver-
tices because exactly the angle deficit at each has been
sutured in; they have been replaced by a new vertex v′

of curvature ω′ = ω1 + ω2 (preserving the total curva-
ture). Figure 2(a) illustrates this. Here γ(v1, v2) = v1v2
is the top “roof line” of the house-shaped polyhedron
P. Because ω1 = ω2 = 1

2π, T has base angles 1
4π and

apex angle 1
2π. Thus the curvature ω′ at v′ is π. (Other

aspects of this figure will be discussed later.)
Note this vertex-merging procedure only works when

ω1 + ω2 < 2π; otherwise the angle at the apex v̄′ of T
would be greater than or equal to π.
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Figure 2: (a) C = (a, b, c, d) is a convex curve with
angle 3

4π to the left at each vertex. The curvature at v1
and at v2 is 1

2π. (b) Cutting along the generator from
v′ through the midpoint of ad and developing C shows
that it lives on a cone with apex angle π at v′. (Base of
P is 3×

√
2.)

Lemma 1 A curve C that lives on a cone Λ (say, to
its left) uniquely determines that cone.

Proof. Sketch. The apex angle of any cone on which
C lives must be α = 2π − ΩL, where ΩL is the total
curvature inside and left of C. Imagining rolling out two
distinct cones cut along a generator through the same
point x ∈ C leads to isometric unfoldings, showing that
the cones are in fact identical. Details are in [5]. �

3 Convex Curves

The lemma below reproves the result from [7].

Lemma 2 Let C be a convex curve on P, convex to its
left. Then C lives on a cone ΛL to its left side, whose
apex a has curvature ΩL, and so has cone apex angle
2π − ΩL. C is visible from the apex a of Λ.

Proof. Sketch. By the Gauss-Bonnet theorem, τL +
ΩL = 2π. Because τL ≥ 0 for a convex curve, we must
have ΩL ≤ 2π. If ΩL < 2π, we continually merge ver-
tices in PL until only one remains, at which point PL is
a pyramid, and therefore a cone. If ΩL = 2π, a slight
alteration of the proof results in C living on a cylinder.
Details are in [5]. �

Example 1. In Figure 2, the two vertices inside C, of
curvature 1

2π each, are merged to one of curvature π,
which is then the apex of a cone on which C lives.
Example 2. Figure 3(a) shows an example with three
vertices inside C. P is a doubly covered flat pentagon,
and C = (v4, v5, v4) is the closed curve consisting of a
repetition of the segment v4v5. C has π surface angle at
every point to its left, and so is convex. The curvatures
at the other vertices are ω1 = π and ω2 = ω3 = 1

2π.
Thus ΩL = 2π, and the proof of Lemma 2 shows that C
lives on a cylinder. Following the proof, merging v1 and
v2 removes those vertices and creates a new vertex v12 of
curvature 3

2π; see (b) of the figure. Finally merging v12
with v3 creates a “vertex at infinity” v123 of curvature
2π. Thus C lives on a cylinder as claimed. If we first
merged v2 and v3 to v23, and then v23 to v1, the result
is exactly the same, although not obviously so.

v3

v5v4

v2

v1

v3

v5v4 v5v4

v12

v123

(a) (b) (c)

Figure 3: (a) A doubly covered flat pentagon. (b) After
merging v1 and v2. (c) After merging v12 and v3.

4 Convex Loops

Convex Loops and Cones. We first show that the
technique that proved successful for convex curves can-
not apply to all convex loops: not every convex loop
lives on a cone. Consider the polyhedron P shown in
Figure 4(a), which is a variation on the example from
Figure 2(a). Here C = (a, b, b′, x, c′, c, d) is a convex
loop, with loop point x. The cone on which it should
live is analogous to Figure 2(b): vertex merging of v1
and v2 again produces the cone apex v′ whose curvature
is π. But C does not “fit” on this cone, as Figure 4(b)
shows; the apex a = v′ is not inside C.

Overlapping development of convex loop. In light of
the preceding negative result, it is perhaps not surpris-
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Figure 4: (a) A convex loop C that does not live on a
cone. (b) A flattening of the cone on which it should
live. (Base of P is 3× 3.)

ing that there are convex loops C and a point x ∈ C
such that Cx left-develops with overlap. Indeed Figure 5
shows an example where x is the loop point.

x

x1 x2

a1

a2

a1
a2

(a) (b)

Figure 5: (a) P with convex loop C. (b) Cx when cut
at loop point x.

Visibility Points. Despite the negative result illus-
trated above, we can show that there always exists some
cut point y that develops a convex loop without overlap.

Say that y ∈ C is a visibility point for C if for every
point z ∈ C there is a shortest path joining y to z that
remains interior to C except at its endpoints. The fol-
lowing proof sketch shows, roughly, that a convex loop
C lives on the union of two cones (Case I), or on two
cones separated by another region (Case II). This suf-
fices to establish a non-overlapping development. The
sketch relies at several points on our work on the star
unfolding in [4].

Lemma 3 Every convex loop C has a visibility point
y different from its loop point x, and Cy left-develops
without overlap.

Proof. Sketch. Let τ1 and τ2 be the tangent directions
of C at x, and consider µi = −τi.

Case I. Assume first there exists a shortest path
γ = xy from x to some y ∈ C whose tangent direction
at x lies between µ1 and µ2; see Figure 6. Then γ splits
P = PL into two convex regions Pi sharing the com-
mon boundary point y, and hence (by Lemma 8 in [4])

y “sees” every point in P . Moreover, vertex merging
in each Pi produces two cones Λi (of apices ai) with
common boundary γ.

τ1

μ1

μ2

τ2

x

y

γL α

Figure 6: Case 1: γ = xy is a shortest path.

Claim 1. Cutting each cone along the generator aiy
unfolds the union of cones without overlappings. Con-
sequently, this develops C without overlap.

Case II. Assume now that Case I does not hold.
Then P must contain a “fat digon” D, a concept
from [4]. This is a region bounded by two shortest paths
from x to some y ∈ C whose angle at x covers all possi-
ble “splitting” γ between µ1 and µ2. In this case what
remains outside the digon is the union of two convex
regions Pi, each visible from y. Moreover, D is itself
completely visible from y (see Sec. 4.2 in [4]). Again we
perform vertex merging in each Pi to obtain two cones,
of apices ai, which we unfold by cutting along aiy.

We unfold D by the star unfolding with respect to y,
and apply Lemma 7 in [4] to establish that the result
lies inside some angle (at x).

Claim 2. We can join the unfoldings without overlap-
pings. Consequently, this develops C without overlap.
The proof of Claim 2 follows the one for Claim 1, with
the additional fact that the star unfolding of the “fat
digon” fits inside a circular sector at x̄. �

This result on convex loops is best possible in the sense
that there are curves C that are convex except at two
exceptional points, and for which Cx overlaps for every
x.

5 Reflex Curves and Reflex Loops

For each corner ci of a curve C, αi +ωi +βi = 2π, where
αi and βi are the left and right angles at ci respectively,
and ωi is the curvature at ci. When C is vertex-free,
ωi = 0 at all corners, and the relationships among the
curve classes is simple and natural: the other side of a
convex curve is reflex, the other side of a reflex curve is
convex. The same holds for the loop versions: the other
side of a convex loop is a reflex loop (because αm ≥ π
implies βm ≤ π, where cm is the loop point), and the
other side of a reflex loop is a convex loop. When C
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includes vertices, the relationships between the curve
classes are more complicated. The other side of a convex
curve is reflex only if the curvatures at the vertices on
C are small enough so that αi + ωi ≤ π; C would still
be convex even if it just included those vertices inside.
The same holds for convex loops.

On the other hand, the other side of a reflex curve is
always convex, because nonzero vertex curvatures only
make the other side more convex. The other side of a
reflex loop is a convex loop, and it is a convex curve if
the curvature at the loop point cm is large enough to
force αm ≤ π, i.e., if βm + ωm ≥ π.

This latter subclass of reflex loops—those whose other
side is convex—especially interest us, because any con-
vex curve that includes at most one vertex is a reflex
loop of that type. All our results in this section hold for
this class of curves.

Lemma 4 Let C be a curve that is either reflex (to its
right), or a reflex loop which is convex to the other (left)
side, with βm < π at the loop point cm. Then C lives
on a cone ΛR to its reflex side, and is visible from its
apex a. If ΩR > 2π, then the reflex neighborhood NR is
to the unbounded side of ΛR, i.e., the apex of ΛR is left
of C; if ΩR < 2π, then NR is to the bounded side, i.e.,
the apex of ΛR is to the right side of C. If ΩR = 2π,
C ∪NR lives on a cylinder.

Proof. Sketch. Because C is convex to its left, we have
ΩL ≤ 2π. Just as in Lemma 2, merge the vertices
strictly in PL to one vertex a. Let ΛL be the cone with
apex a on which C now lives.

The remainder of the proof alters ΛL to ΛR step-by-
step with repeated insertions of “curvature triangles” to
the left at each corner ci of C. Each of these triangles is
an isosceles triangle of apex angle ωi, which flattens the
surface at ci without altering C ∪ NR. For a detailed
proof, see [5] �

Example 3. An example of a reflex loop that satisfies the
hypotheses of Lemma 4 is shown in Figure 7(a). Here
C has five corners, and is convex to one side at each.
C passes through only one vertex of the cuboctahedron
P, and so it is reflex at the four non-vertex corners to
its other side. Corner c5 coincides with a vertex of P,
which has curvature ω5 = 1

3π. Here α5 = β5 = 5
6π.

Because β5 < π, C is a reflex loop. We have ΩL = 2
3π

because C includes two cuboctahedron vertices, u and v
in the figure. ΩC = ω5 = 1

3π. And therefore ΩR = 3π.
The apex curvature of ΛL is ΩL = 2

3π, and the apex
curvature of ΛR is π. NR lives on the unbounded side
of this cone, which is shown shaded in Figure 7(b). Note
the apex a is left of C, in accord with the lemma.
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Figure 7: (a) A curve C of five corners passing through
one polyhedron vertex. C is convex to one side, and a
reflex loop to the other, with loop point c5, at which
β5 = 5

6π(= 150◦) < π. (b) The cone ΛR with apex a is
shaded.

6 Discussion

We summarize the results claimed in the Introduction
in a theorem:

Theorem 5 On a convex polyhedron, every convex
curve left-develops without overlap, and every reflex
curve, and reflex loop whose other side is convex, right-
develops without overlap, for every cut point. Ev-
ery convex loop has some cut-point from which it left-
develops without overlap.

Proving that a curve on a convex polyhedron lives on
a cone is a powerful technique for establishing that these
polyhedron curves develop without overlap. Even when
a curve—such as a convex loop—does not live on a cone,
still the cone perspective can help prove nonoverlapping
development (Lemma 3).

Many questions remain.

Overlapping Developments. It is not the case that ev-
ery curve that lives on a cone develops without overlap.
Here we show that there exist C such that Cx is non-
simple for every choice of x. We provide one specific
example, but it can be generalized.

The cone Λ has apex angle α = 3
4π; it is shown cut

open and flattened in two views in Figure 8(a,b). An
open curve C ′ = (p1, p2, p3, p4, p5) is drawn on the cone.
Directing C ′ in that order, it turns left by 3

4π at p2, p3,
and p4. From p5, we loop around the apex a with a
segment S = (p5, p6, p

′
5), where p′5 is a point near p5 (not

shown in the figure). Finally, we form a simple closed
curve on Λ by then doubling C ′ at a slight separation
(again not illustrated in the figure), so that from p5

it returns in reverse order along that slightly displaced
path to p1 again. Note that C = C ∪ S ∪ C ′ is closed
and includes the apex a in its (left) interior.
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Figure 8: (a) Open curve C ′ = (p1, p2, p3, p4, p5) on cone
of angle α, with cone opened. (b) A different opening
of the same cone and curve. (c) Development of curve
C ′ self-intersects.

Now, let x be any point on C from which we will start
the development Cx. Because C is essentially C ′∪C ′, x
must fall in one or the other copy of C ′, or at their join
at p1. Regardless of the location of x, at least one of
the two copies of C ′ is unaffected. So Cx must include
C ′ as a subpath in the plane.

Finally, developing C ′ reveals that it self-intersects:
Figure 8(c). Therefore, Cx is not simple for any x.
Moreover, it is easy to extend this example to force self-
intersection for many values of α and analogous curves.
The curve C ′ was selected only because its development
is self-evident.

Slice Curves. There are curves already known to de-
velop without overlap that are not known to live on a
cone. One particular class we could not settle are the
slice curves. A slice curve C is the intersection of P
with a plane. Slice curves in general are not convex.
The intersection of P with a plane is a convex polygon
in that plane, but the surface angles of P to either side
along C could be greater or smaller than π at differ-

ent points. Slice curves were proved to develop without
intersection, to either side, in [6], so they are good can-
didates to live on cones. However, we have not been
able to prove that they do.

Convex Loops. Although we have shown that there is
some cut point from which every convex loop develops
without overlap (Lemma 3), we have not determined all
the cut points that enjoy this property.

Cone Curves. Finally, we have not obtained a com-
plete classification of the curves on a cone that develop,
for every cut point x, as simple curves in the plane. It
would equally interesting to identify the class of curves
on cones for which there exists at least one cut-point
that leads to simple development. Indeed, the same
questions for curves on a sphere are also unresolved [3].
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