
CCCG 2011, Toronto ON, August 10–12, 2011

Space-efficient Algorithms for Empty Space Recognition
among a Point Set in 2D and 3D

Minati De∗† Subhas C. Nandy∗

Abstract

In this paper, we consider the problem of designing
in-place algorithms for computing the maximum area
empty rectangle of arbitrary orientation among a set
of points in 2D, and the maximum volume empty axis-
parallel cuboid among a set of points in 3D. If n points
are given in an array of size n, the worst case time com-
plexity of our proposed algorithms for both the prob-
lems is O(n3); both the algorithms use O(1) extra space
in addition to the array containing the input points.

1 Introduction

Designing low memory algorithms is considered to be an
important paradigm for the data-streaming and data-
mining applications. Here the amount of data available
is huge, and it is wise to consider as much data as pos-
sible to get precise result. In other areas also, the low
memory algorithms are important in spite of the fact
that computer hardware has become extremely cheap
now-a-days. For an example, consider the VLSI phys-
ical design applications, where the number of circuit
modules in a VLSI chip are rapidly growing day by day,
and running the standard routing, placement, verifica-
tion algorithms, are becoming impossible even in the
modern computers due to the size of data. In sensor
network applications, it is often found that in order to
get precise information, a huge number of sensors are
deployed. Moreover in tiny devices, for example, sen-
sors, GPS systems, mobile hand-sets, small robots, etc,
in order to maintain its size, one needs to lower down
the memory size. For all these reasons, designing low-
memory algorithms for practical problems have become
a challenging task to the algorithm researchers.
In computational geometry, in-place algorithms are
studied for a very few problems. For the convex hull
problem in 2D, the best known result is an O(n log h)
algorithm with O(1) extra space [5]. Bronnimann et al.
[4] showed that the upper hull of a set of n points in 3D
can be computed in O(n log3 n) time using O(1) extra
space. The best known algorithm for this problem runs
in O(n log n) expected time [8]. Bose et al. [3] used

∗Indian Statistical Institute, Kolkata, India.
†Presently visiting Carleton University, Canada.

minati.isi@gmail.com

an in-place divide and conquer technique to solve the
following problems in 2D using O(1) extra space: (i)
a deterministic O(n log n) time algorithm for the clos-
est pair problem, (ii) a randomized expected O(n log n)
time algorithm for the bichromatic closest pair problem,
and (iii) a deterministicO(n log n+k) time algorithm for
computing the intersections among orthogonal line seg-
ments. For computing the intersections among arbitrary
line segments, two algorithms are available in [7]. If the
input array can be used for storing intermediate results,
then the problem can be solved in O((n+ k) log n) time
and O(1) space. but, if the input array is not allowed
to be destroyed, then the time complexity increases by
a factor of log n; it also requires O(log2 n) extra space.
Vahrenhold [15] proposed an O(n

3
2 log n) time and O(1)

extra space algorithm for the Klee’s measure problem,
where the objective is to compute the union of n axis-
parallel rectangles of arbitrary sizes. Asano and Rote
[2] showed that all the Delaunay triangles among a set
of n points can be computed in O(n2) time using O(1)
space. This, in turn, recognizes the largest empty circle
among a point set with the same time complexity.
We will now consider the algorithms for recognizing
the maximum area empty rectangle among a set of n
points in a region R in 2D. The axis-parallel version
of the problem was first introduced by Namaad et al.
[13]. They introduced the concept of maximal empty
rectangle (MER). It is an empty rectangle, not prop-
erly contained in any other empty rectangle. They
showed that the number of MERs (m) among a set of n
points may be Ω(n2) in the worst case; but if the points
are randomly placed, then the expected value of m is
O(n log n). In the same paper, an O(min(n2,m log n))
time algorithm for identifying the largest MER was also
proposed. Orlowski [14] proposed an O(m + n log n)
time algorithm for finding the largest MER that in-
spects all the MERs present in R, and identifies the
largest one. The best known algorithm for this prob-
lem runs in O(n log2 n) time in the worst case [1]. All
these algorithms use O(n) extra space. The worst case
time and space complexities for computing the largest
empty rectangle of arbitrary orientation among a set
of n points are O(n3) and O(n2) respectively [6]. Re-
cently, an in-place algorithm for recognizing the largest
empty axis-parallel rectangle is proposed that runs in
O((m+ n) log n) time and uses O(1) extra space in ad-

23rd Canadian Conference on Computational Geometry, 2011

dition to the array containing the input points [9]. It
uses a novel way of maintaining priority search tree in an
in-place manner. In 3D, the largest empty axis-parallel
cuboid among a set of n points in an axis-parallel cuboid
region R can be computed in O(C+n2 log n) time with
O(n) extra space, where C is the number of maximal
empty axis-parallel cuboids in R, which may be O(n3)
in worst case [12].
We first describe an in-place algorithm for computing
the maximum area empty rectangle of any arbitrary ori-
entation among a set of n points in a 2D rectangular
region. We will also consider a simplified 3D version
of the problem, where the objective is to identify the
maximum volume empty axis-parallel cuboid among a
set of n points in a 3D axis-parallel region. The time
complexity of both the algorithms is O(n3), and they
need O(1) space in addition to the input array.

2 Computing largest MER of arbitrary orientation

We now propose an in-place algorithm for finding max-
imum area empty rectangle of arbitrary orientation
among a set of points P inside a rectangular region R.
The problem was addressed by Chaudhuri et al. [6].
They introduced the concept of PMER. A PMER, de-
fined by four points pi, pj , pk, p` ∈ P , is the maximum
area rectangle of any arbitrary orientation whose four
sides pass through pi, pj , pk and p`, and the interior of
the rectangle does not contain any member of P . It is
shown that the number of PMERs is bounded above by
O(n3). It follows from the following observation:

Observation 1 [6] At least one side of a PMER must
contain two points from P , and other three sides either
contain at least one point of P or the boundary of R.

2.1 Algorithm

Observation 1 plays the central role in our algorithm.
We consider each pair of points p, q ∈ P , and compute
all the PMERs with one side passing through p, q. We
use geometric duality for solving this problem. The du-
ality transform in 2D maps a point p = (α, β) in the
primal plane into a line p′ = αx − β in the dual plane
and maps a non-vertical line ` : y = mx−c in the primal
plane into the point `′ = (m, c) in the dual plane. For
the standard properties of duality transform, see [10].

Observation 2 Let v be a point on a vertical line L in
the dual plane, and q′1, q

′
2, . . . , q

′
m be m lines in the dual

plane that intersect L in one side (above or below) of v,
and are arranged in increasing order of their distances
from v along L. Now, all the points q1, q2, . . . qm are in
one side (below or above) of the line v′ in the primal

plane and the perpendicular distances of q1, q2, . . . , qm
from the line v′ are also in increasing order.

We will consider the arrangement A(P) of the set of
dual lines corresponding to all the points in the array
P . Its each vertex vij obtained by the intersection of the
dual lines p′i and p′j , corresponds to the line `ij passing
through pi, pj ∈ P in the primal plane. Thus, in order
to get the lines passing through each pair of points in
P , we need to visit all the vertices in A(P).
Note that, each element of P corresponding to an input
point also represents the corresponding dual line. We
first identify the left-most vertex in A(P) by comput-
ing the intersections of all the O(n2) pairs of dual lines.
Now, a vertical line L starts sweeping from that posi-
tion. We execute a sorting step to arrange the members
in P such that the y-coordinates of the points of in-
tersection of those dual lines and the sweep line L are
in increasing order. Thus, P also serves the role of the
sweep line status array. During the sweep, this property
of P is always maintained. Here the two lines, say p′

and q′, incident to the next vertex v ∈ A(P) will remain
consecutive, say at P [i] and P [i+1]. All the lines below
(resp. above) v are to the right of P [i+ 1] (resp. left of
P [i]) in the array P , and are in increasing order of their
distances from the point v along the line L. We pro-
cess v to compute all the MERs whose one side passes
through (p, q) using the procedure process(p, q). The
procedure get next vertex computes the next vertex
of A(P) that L faces to the right of v during the sweep.

2.1.1 get next event

After processing a vertex v (intersection of a pair of dual
lines p′ and q′ stored at P [i] and P [i+ 1] respectively),
when L moves to the right of v, p′ and q′ are swapped
in P for maintaining their order along L. We do not
maintain the event queue. At each step, we compute
the next vertex in A(P) to be processed.

Observation 3 [11] At any instant of time during the
sweep, the vertex closest to L to its right side is the point
of intersection of a pair of dual lines that are consecutive
in the ordered list of dual lines.

We compute the intersection of each pair of consecutive
dual lines in the array P . If it is to the right of L, then
it is a feasible intersection point (FIP). By Observation
3, The next vertex of A(P) to the right of L corresponds
the left-most FIP. If no such FIP is obtained, the sweep
stops. Thus, the time complexity for getting the next
vertex of A(P) for processing is O(n).

CCCG 2011, Toronto ON, August 10–12, 2011

2.1.2 Process(p, q)

Let v be the vertex in A(P) under process. It corre-
sponds to the pair of points p, q ∈ P stored at P [i] and
P [i + 1] respectively. Let λ be the straight line pass-
ing through p, q. By Observation 2 the points below
λ are Π1 = {P [i + 2], P [i + 3], . . . , P [n]} in increasing
order of their distances from λ. We now describe the
method of computing all the PMERs with (p, q) at its
top boundary. The method of computing all the PMERs
with (p, q) at their bottom boundary with the points
Π2 = {P [i− 1], P [i− 2], . . . p[1]} is the same.
Our algorithm considers a curtain whose two sides are
bounded by the boundary of R, and top boundary is
attached to both p, q. The curtain falls in a manner
parallel to the line λ. As soon as it hits a point a ∈ Π1

it reports a PMER. This point is easily obtained from
the sorted list Π1. If the projection a∗ of the point a
on λ lies inside the interval [p, q], the processing of λ
stops. Otherwise, the curtain is truncated at a∗, and
the process continues to process the next point in Π1.

2.2 Complexity analysis

We have considered all the O(n2) vertices ofA(P). Gen-
eration of each vertex v needs O(n) time with O(1) ad-
ditional space. The time required for processing the
vertex v for computing all the PMERs with one side
passing through the pair of points (p, q) corresponding
to the vertex v is also O(n), and it needs O(1) extra
work-space. The algorithm needs to maintain a global
counter to store the maximum area/perimeter PMER.

Theorem 1 Given an array with n points, the maxi-
mum area/perimeter rectangle of arbitrary orientation
can be computed in O(n3) time with O(1) extra space.

Corollary 1.1 The method proposed in process(p, q)
can also be used to compute the largest empty axis-
parallel rectangle in O(n2) time.

Proof. For computing the largest empty axis-parallel
rectangle, we need not have to consider the duals of the
points in P . Here for each point pi ∈ P , we need to
execute four line sweep passes as follows:
• Sweep a horizontal line upwards (resp. downwards)
to get the largest axis-parallel MER with bottom (resp.
top) boundary passing through pi, and
• Sweep a vertical line towards left (resp. right) to get
the largest axis-parallel MER with right (resp. left)
boundary passing through pi.
To execute the horizontal (resp. vertical) line sweep
for all the points, we need to sort the points in P with
respect to their y-coordinates (resp. x-coordinates) once

only. Then the time complexity of the line sweep for
each point pi ∈ P is O(n). �

3 Computing largest axis-parallel MEC

We now describe the method of computing the largest
empty cuboid among a set of points P = {p1, p2, . . . , pn}
in a 3D axis-parallel parallelopiped (cuboid) R bounded
by six axis-parallel planes. The coordinate of the point
pi is denoted by (xi, yi, zi). A maximal empty cuboid
(MEC) is a cuboid whose each face either coincides with
a face of R or passes through a point in P , and its
interior does not contain any point in P . The objective
is to identify an MEC of maximum volume. There are
three types of MECs’ inside R.

type-1: the MEC with both top and bottom faces
aligned with the top and bottom faces of R,

type-2: the MEC whose top face is aligned with the
top face of R, but bottom face passes through a
point in P , and

type-3: the MEC whose top face passes through some
point in P . Bottom face may pass through a point
in P or may coincide with the bottom face of R.

Theorem 2 [12] The number of type-1, type-2 and
type-3 MECs’ inside R are O(n2), O(n2) and O(n3)
respectively in the worst case.

From now onwards, we use P to denote the array of
size n containing the input points. We show that the
methods proposed in [12] for identifying the largest type-
1, type-2 and type-3 MECs can be made in-place with
O(1) extra work-space in addition to the input array.

3.1 Computation of largest type-1 MEC

Consider the projections of the points in P on the top
face H of R. Note that, each maximal empty axis-
parallel rectangle (MER) on H corresponds to a type-1
MEC. Since the height of all these MECs’ are the same,
the problem reduces to computing the maximum area
MER in H. Corollary 1.1 suggests the following result:

Lemma 3 The largest empty type-1 MEC can be com-
puted in O(n2) time using O(1) extra work-space.

3.2 Computation of largest type-2 MEC

We assume that the points in P are sorted in decreas-
ing order of their z-coordinates. We consider each point
pi ∈ P in order, and compute MEC(pi), the largest
type-2 MEC whose bottom face passes through pi. Let
H(pi) be the horizontal plane passing through pi, and

23rd Canadian Conference on Computational Geometry, 2011

pi

Figure 1: Empty orthoconvex polygon around pi

Pi = {p1, p2, . . . , pk} be the set of points strictly above
H(pi). Note that, MEC(pi) corresponds to the largest
MER on H(pi) containing the point pi among the pro-
jections of the points in Pi on H(pi) as obstacles.
Let us partition the plane H(pi) into four quadrants by
drawing two mutually perpendicular axis-parallel lines
passing through pi. In O(n) time, we will be able to
partition the portion of the array P [1, 2, . . . , k] into four
parts, namely P θi , θ = 1, 2, 3, 4, where P θi denote the
points in the θ-th quadrant. The members in P θi are in
consecutive positions in the array P .
In each quadrant θ, we define the maximal closest stair
STAIRθ around pi with a subset of points of P θi as in
[12]. STAIRθ is unique in the θ-th quadrant. The con-
catenation of these four stairs describe an empty axis-
parallel orthoconvex polygon OP (see Figure 1 for il-
lustration). The problem of locating the largest type-2
MEC with pi on its bottom face reduces to finding the
largest MER inside OP containing the point pi. We
explain the method of computing STAIR1. The other
stairs are computed in a similar manner. Next, we ex-
plain the method of computing MER(pi) in OP .

3.2.1 Computation of STAIR1

We sort the points in P 1
i in increasing order of their

y-coordinates. Now, sweep a line parallel to the x-axis
on H(pi) to identify STAIR1. The points in STAIR1

are maintained at the begining of the array P 1
i , and the

points in P 1
i that are not in STAIR1, are stored at the

end of P 1
i . The points in STAIR1 are stored in decreas-

ing order of their x-coordinates. Two index variables α
and β are maintained during the execution; α indicates
the index of the point in P 1

i under processing, and β
indicates the index of the last point in STAIR1 (i.e.,
having minimum x-coordinate among the ones identi-
fied so far). During the sweep, if pα = (xα, yα, zα) ∈ P 1

i

satisfies xα > xβ , then pα does not appear on STAIR1.
However, if xα < xβ , then pα appears in STAIR1. In
such a case, if α = β + 1, then both α and β are in-
cremented by 1. But, if α > β + 1, then (i) β is incre-
mented, (ii) P 1

i [α] and P 1
i [β] are swapped, and (iii) α is

incremented to process the next point of P 1
i .

3.2.2 Computation of MER(pi)

It is easy to observe that, for every MER inside the
orthoconvex polygon OP , its north side will contain
a point in STAIR1 ∪ STAIR2, and its south side will
contain a point STAIR3 ∪ STAIR4. In our algorithm
for computing MER(pi), we will consider each point
in STAIR1 ∪ STAIR2, and compute all the MERs with
north side passing through it.
The MERs with north side touching a point pj ∈
STAIR1 are obtained as follows. We draw the projec-
tions q1 and q2 of pj on STAIR2 and STAIR4 respec-
tively as shown in Figure 2. Let q1 lies on the vertical
line passing through pα ∈ STAIR2 and q2 lies on the
horizontal line passing through pβ ∈ STAIR4. Thus, pα
satisfies y(q1) ∈ [y(pα′), y(pα)], where pα and pα′ are
two consecutive points on STAIR2. Thus, q1 can be
obtained by performing binary search in STAIR2. Sim-
ilarly, q2 can be obtained by performing binary search
in STAIR4. Now, we compute the projections of q1 and
q2 on STAIR3. Let these two points be q3 and q4 re-
spectively. Now, two situations may arise:
[y(q3) ≤ y(q4):] Here only one MER with pj on its
north boundary is possible. Its west and south sides
will contain pα and pβ respectively; its east side will
contain a point p′j ∈ STAIR1 adjacent to pj to the right
side (y(p′j) < y(pj)) or a point q ∈ STAIR4 adjacent to
q2 to the right side (y(q) > y(q2)). See Figure 2(a).
[y(q3) > y(q4):] Here more than one MER with pj
on its north boundary may exist (Figure 2(b)). Let
µ1, µ2, . . . , µm be the consecutive points in STAIR3 with
y(µ1) < y(µ2) < . . . < y(µm), and y(µr) ∈ [y(q3), y(q4)]
for r = 1, 2, . . . ,m. Similarly, ν1, ν2, . . . , ν` are consecu-
tive points in STAIR4 with y(ν1) < y(ν2) < . . . < y(ν`),
and y(νr) ∈ [y(q3), y(q4] for r = 1, 2, . . . , `. Here,
`+m+1 MERs are possible with north boundary passing
through pj . Their south boundaries will pass through
q2, µ1, µ2, . . . , µk, ν1, ν2, . . . , ν` respectively. The east
and west sides of these MERs are uniquely defined, and
are obtained by traversing the stairs in four quadrants.

Lemma 4 The time complexity of computing the
largest type-2 MEC is O(n2 log n) with O(1) extra space.

Proof. We prove this lemma by showing that the time
complexity of generating all the type-2 MECs with pi
on its bottom face is O(Ci + n log n); Ci is the number
of such MECs present in R. Processing of the point pi
consists of the following three steps:
[Step 1:] Partitioning the points above pi into P θi , for
θ = 1, 2, 3, 4. This needs O(n) time in the worst case.
[Step 2:] Computing STAIRθ, θ = 1, 2, 3, 4. This needs
O(n log n) time since a sorting step among the points

CCCG 2011, Toronto ON, August 10–12, 2011

pi

q1

q2

(a)

q3

q4

pi

q1

q2

(b)

q3

q4

Figure 2: Computation of MER(pi)

in P θi with respect to their y-coordinates is involved
here. After the sorting, the line sweep for constructing
STAIRθ needs O(n) time.
[Step 3:] Computing MER(pi). This needs O(Ci +
n log n) time. The second component in the time com-
plexity appears due to the fact that for each point
pj ∈ STAIR1 ∪ STAIR2, we need to execute binary
searches for computing its projections q1 and q2 in the
adjacent stairs. Again we may need two binary searches
to get the set of feasible points in STAIR3 that may ap-
pear in the south boundary of the generated MERs.
Since (i) we need to process all the points pi ∈ P , (ii)
C =

∑n
i=1 Ci, and (iii) |C| = O(n2) in the worst case

(see Theorem 2), the time complexity result follows.
We have used four integer locations n1, n2, n3, n4, six
index variables q1, q2, q3, q4, α, β, and a space for swap
operation. Thus, the space complexity follows. �

3.3 Computation of largest type-3 MEC

Here we describe the method of generating all the type-
3 MECs with top face passing through a point pi ∈ P .
Let the points in P be in decreasing order of their z-
coordinates. Consider the horizontal plane H(pi) pass-
ing through pi and sweep it downwards. When the
sweeping plane hits a point pj ∈ P , the points inside
the two horizontal planes H(pi) and H(pj) will partici-
pate in computing the MECs with top and bottom faces
passing through pi and pj respectively.
As in Subsection 3.2.1, here also we use P θi to de-
note the subset of points in P that lie in θ-th quad-
rant, θ = 1, 2, 3, 4, determined by the horizontal and
vertical lines through the point pi on H(pi). The
points in

⋃4
θ=1 P

θ
i are stored in the array-positions

P [i + 1], P [i + 2], . . . , P [n]. The members in P θi are in
the consecutive locations of the array P in decreasing
order of their z-coordinates. We maintain four integer
variables nθ and four index variables χθ, θ = 1, 2, 3, 4.
nθ denotes |P θi | and χθ indicates the last point hit by
the sweeping plane in the θ-th quadrant. At an in-
stant of time the point hit by the sweeping plane is

obtained by comparing the z-coordinates of the points
{P [χθ + 1], θ = 1, 2, 3, 4}.
Let the point pj be under process. The empty orthocon-
vex polygon OP around the point pi is determined by
four stairs {STAIRθ, θ = 1, 2, 3, 4} using the points lying
inside the horizontal slab bounded by H(pi) and H(pj)
(but not including pi and pj). The points determining
STAIRθ are stored at the begining of the subarray P θi
in order of their y-coordinates.
In order to compute the largest MEC with top and bot-
tom faces passing through pi and pj respectively, we
need to compute MER(pi, pj), the largest MER in the
orthoonvex polygon OP that contains both pi and pro-
jection p′j of pj on H(pi). Here, the following two tasks
need to be performed: (i) Computing all the MERs in
OP that contains both pi and p′j , and (ii) updating OP
by inserting p′j for processing the next point pj+1.

3.3.1 Computing MER(pi, pj)

Without loss of generality, assume that p′j is in the first
quadrant. If p′j is in some other quadrant, the situation
is similarly tackled. We now determine the subset of
points in STAIR1∪STAIR2 that can appear in the north
boundary of an MER containing both pi and p′j .

Let STAIR1 = {qk, k = 1, 2 . . . ,m} ⊆ P 1
i , and the

points in Q = {qα, qα+1, . . . , qβ} ⊆ STAIR1 satisfy
x(qk) > x(pj) and y(qk) > y(pj). All the MERs
in OP with north boundary passing through qk, k =
α, α+ 1, . . . , β + 1 and containing pi in its proper inte-
rior will contain p′j also. We draw the projections of p′j
and qβ on STAIR2. Let these two points be µ and ν re-
spectively. If x(µ) = x(ν), then no point on STAIR2 can
appear on the north boundary of a desired MER. But if
x(µ) < x(ν), then all the points q′ ∈ STAIR2 satisfying
x(µ) < x(q′) < x(ν) can appear on the north bound-
ary of a desired MER. In Figure 3, the set of points
that can appear on the north boundary of an MER are
marked with empty dots. The method of computing an
MER with a point qk ∈ STAIR1 ∪ STAIR2 on its north
boundary is same as that in Subsection 3.2.2.

23rd Canadian Conference on Computational Geometry, 2011

pi

p′
j

qα

qβ

µ

ν

Figure 3: Computation of type-3 MEC

3.3.2 Updating OP

After computing the set of MERs in OP containing pi
and p′j in its interior, we update OP by inserting p′j
in the respective stair. We have already assumed that
p′j lies in the first quadrant, and each member qk ∈ Q
satisfies x(qk) > x(pj) and y(qk) > y(pj). In order to
insert p′j in STAIR1, we need to remove the members in
Q from STAIR1. We maintain two index variables α and
β; α indicates the last point of STAIR1 observed so far,
and β indicates the point pj under consideration in P 1

i ,
α ≤ β−1. If α < β−1, then the points in the positions
α+ 1, . . . , β − 1 of P 1

i are already considered, but their
projections are not present in STAIR1. While inserting
p′j in STAIR1, we place pj in its desired location as
follows: (i) swap P [β+1] and P [α], and then (ii) execute
a sequence of swap swap(P [r], P [r − 1]) starting from
r = β + 1 until a point P [r] ∈ STAIR1 is found such
that y(P [r]) < y(P [r − 1]). Now, if |Q| > 0, then we
remove the members in Q using two index variables r
and s. We start with r = γ + 1 and s = γ + |Q|+ 1. At
each step, we execute swap(P [r], P [s]) and increment r
and s by 1 until s = β. This needs O(max(|Q|, (β−γ)))
time which may be O(|P 1

i |) in the worst case.
After computing the largest type-3 MEC with pi on its
top boundary, we need to sort the points again with
respect to their z-coordinates. This is required for pro-
cessing pi+1. Thus we have the following result:

Lemma 5 The time required for processing pi is O(n2+
C ′i) in the worst case, where C ′i is the number of type-3
MECs with pi on its top boundary.

Proof. The time required for computing MER(pi, pj)
may be O(|Pij | + Cij), where Pij denotes the number
of points inside the horizontal slab bounded by H(pi)
and H(pj), and Cij denotes the number of MERs con-
taining both pi and p′j inside OP with the projection
of points Pij on H(pi). In order to compute the largest
type-3 MEC with pi on its top boundary, we need to
compute MER(pi, pj) for all j > i, C ′i =

∑n
j=i+1 Cij ,

and
∑n
j=i+1 |Pij | = O((n − i)2). Finally after the pro-

cessing of pi, the sorting step takes O(n log n) time. �

Theorem 6 The worst case time complexity of our in-
place algorithm for computing the largest MEC is O(n3),
and it takes O(1) extra space.

Proof. The time complexity for computing the largest
type-1 MEC is O(n2) (see Corollary 1.1). Lemma 4 and
the fact that the number of type-2 MECs is O(n2) in
the worst case [12], indicate that the worst case time
complexity of computing the largest type-2 MEC is alo
O(n2 log n). Finally, Lemma 5 says that the worst case
time complexity of computing the largest type-3 MEC
is O(n3). Needless to mention that we have used only
few index variables, four integer variables to maintain
the number of points in the four quadrants on H(pi),
and a temporary variable for the swap operation. �

References

[1] A. Aggarwal and S. Suri. Fast algorithm for comput-
ing the largest empty rectangle. In Symp. on Comput.
Geom., pages 278-290, 1987.

[2] T. Asano and G. Rote. Constant working-space algo-
rithms for geometric problems. In Canad. Conf. on
Comput. Geom., pages 87-90, 2009.

[3] P. Bose, A. Maheshwari, P. Morin, J. Morrison, M. H.
M. Smid and J. Vahrenhold. Space-efficient geometric
divide-and-conquer algorithms. Computational Geome-
try, 37(3):209-227, 2007.

[4] H. Brönnimann, T. M. Chan and E. Y. Chen. Towards
in-place geometric algorithms and data structures. In
Symp. on Comput. Geom., pages 239-246, 2004.

[5] H. Brönnimann, J. Iacono, J. Katajainen, P. Morin, J.
Morrison and G. T. Toussaint. Space-efficient planar
convex hull algorithms. Theoretical Computer Science,
321(1):25-40, 2004.

[6] J. Chaudhuri, S. C. Nandy and S. Das. Largest empty
rectangle among a point set. J. Algorithms, 46(1):54-78,
2003.

[7] E. Y. Chen and T. M. Chan. A space-efficient algorithm
for segment intersection. In Canad. Conf. on Comput.
Geom., pages 68-71, 2003.

[8] T. M. Chan, E. Y. Chen. Optimal in-place algorithms
for 3-D convex hulls and 2-D segment intersection. In
ACM Symp. on Comput. Geom., pages 80-87, 2009.

[9] M. De, A. Maheswari, S. C. Nandy and M.Smid. An in-
place min-max priority search tree. Manuscript, 2011.

[10] H. Edelsbrunner. Algorithms in Combinatorial Geometry,
Springer, Berlin, 1987.

[11] R. Janardan and F. P. Preparata. Widest corridor prob-
lem. Nordic J. Computing. 1(2):231-245, 1994.

[12] S. C. Nandy and B. B. Bhattacharya. Maximal empty
cuboids among points and blocks. Computers and math-
ematics with Applications, 36(3):11-20, 1998.

[13] A. Naamad, D. T. Lee and W. -L. Hsu. On the maxi-
mum empty rectangle problem. Discrete Applied Math-
ematics, 8(3):267-277, 1984.

CCCG 2011, Toronto ON, August 10–12, 2011

[14] M. Orlowski. A new algorithm for the largest empty
rectangle problem. Algorithmica, 5(1-4):65-73, 1990.

[15] J. Vahrenhold. An in-place algorithm for Klee’s mea-
sure problem in two dimensions. Information Process-
ing Letters, 102(4):169-174, 2007.

