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Abstract

We study the problem of finding the optimal connection
between two disconnected vertex-weighted trees. We
are given a distance function on the vertices and seek
to minimize the routing cost of the tree resulting from
adding one single edge between the two trees. The rout-
ing cost is defined as the sum of the weighted distances
between all pairs of vertices in the induced tree-metric.
The problem arises when augmenting and/or repairing
communication networks or infrastructure networks.

We present an asymptotically optimal quadratic-time
algorithm for the general case and show that the prob-
lem can be solved more efficiently for the Euclidean met-
ric, when vertices are mapped to points in the plane, as
well as for compactly representable graph metrics.

1 Introduction

In the construction of communication and infrastructure
networks we often have to find a reasonable balance be-
tween the cost for establishing the links between the ver-
tices in the network and the performance of the network
in terms of various quality measures, such as routing
cost, connectivity and diameter. While the cost should
be minimized and increases with each established link,
the performance of the network should be maximized
and typically improves when more links are added. This
tradeoff can be formalized in different ways. However,
motivated by practical applications of this problem it
is quite common to assume that we are given a lim-
ited budget for the construction cost and wish to op-
timize the performance of the network subject to this
constraint.

The Optimal Network Problem, which has been intro-
duced by Scott [8], addresses the problem of optimizing
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the routing cost of a network, defined by the sum of
the shortest paths between all pairs of vertices in the
graph. Due to its importance for communication net-
works, this problem has received considerable attention,
among others by Dionne and Florian [1] and Wong [10].

If the budget for establishing the links in a network
is rather tight, a tree is often the only affordable infras-
tructure. However, Johnson et al. [6] prove that the op-
timal network problem is NP-complete, even if all edges
have the same length and the network must be a tree.
This problem is also called the Minimum Routing Cost
Spanning Tree Problem (MRCST). More recently, Wu et
al. presented an FPTAS for this problem [11] and Fis-
chetti et al. [3] studied exact algorithms for computing
the minimum routing cost spanning tree.

We consider the related problem of connecting a dis-
connected tree-network by adding a missing edge or re-
pairing a broken network by removing the broken edge
and establishing a new link.

1.1 Problem Definition

More formally, we consider the following problem. We
are given a set of vertices V as well as some distance
function d on V such that d(v, v) = 0 and d(u, v) =
d(v, u) ≥ 0 for all vertices u, v ∈ V . Further, we are
given a partition of V = V1 ∪ V2 and two disjoint trees
T1 = (V1, E1) and T2 = (V2, E2) on V1 and V2, respec-
tively. We write n = |V |, m = |E|, ni = |Vi| and
mi = |Ei| for i ∈ {1, 2}. For each tree T on a subset
V ′ ⊆ V , we consider the tree metric dT , which is de-
fined on V ′ such that the distance between u, v ∈ V ′ is
equal to the sum of the distances on the uniquely de-
fined path between u and v. Further, we assume each
vertex v ∈ V has some non-negative demand c(v). For
V ′ ⊆ V we write c(V ′) :=

∑
v∈V ′ c(v) as a shorthand.

We define the weighted routing cost of T as

rc(T ) =
∑

(u,v)∈V×V

c(u) · c(v) · dT (u, v) .

The demands can be considered to be an indicator
for the importance of the vertices in the network. The
amount of traffic between two vertices in the network
is scaled by the product of the demands modeling the
fact that important vertices are usually involved in more
traffic than less important vertices and that the traffic
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Figure 1: Two vertex-weighted trees and best connec-
tion (dashed).

between two important vertices is usually larger than
that between an important and a less important vertex.

The Optimal Routing Cost Augmentation Problem is
to find vertices u ∈ V1 and v ∈ V2 such that the routing
cost of the tree Tuv = (V,E1 ∪E2 ∪{uv}) is minimized;
see Figure 1 for an example.

For the Optimal Routing Cost Replacement Problem
we are additionally given a pair of vertices u ∈ V1 and
v ∈ V2 that should be excluded from the solution (since
the corresponding edge must be replaced). We can solve
this problem by simultaneously computing the best and
second-best solution. If the best solution coincides with
uv, then we return the second-best solution.

1.2 Contribution

In Section 2 we consider general distance functions. We
show that both the optimal routing cost augmentation
problem and the optimal routing cost replacement prob-
lem can be solved in Θ(n1 · n2) time, which is optimal.
In Section 3 we assume that vertices are points in the
plane and that the distance between points is equal to
the Euclidean distance. We show that both the aug-
mentation problem and the replacement problem can
be solved more efficiently in O(n log min{n1, n2}) time
by querying the additively weighted Voronoi diagram
of a suitably chosen set of points. We adapt this idea
to general graph metrics by computing the additively
weighted Voronoi diagram on graphs in Section 4. This
yields an O(n log n)-time algorithm for compactly rep-
resentable metrics, i.e., metrics that are representable
as sparse graphs. We conclude with some remarks and
open problems in Section 5.

2 An optimal algorithm for the general case

In this section, we consider general distance functions
on the vertex set. We show that the problem can be
solved in Θ(n1 · n2) time, which is optimal. For ease
of notation we write C1 = c(V1) and C2 = c(V2) for
the total demand in T1 and T2, respectively. Given two

vertices u ∈ V1 and v ∈ V2, the routing cost of the tree
Tuv resulting from joining T1 and T2 by the edge uv is
given by

rc(Tuv) = rc(T1) + rc(T2)

+ C2 ·
∑

u′∈V1

c(u′) · dT1(u′, u)

+ C1 ·
∑
v′∈V2

c(v′) · dT2
(v, v′)

+ C1 · C2 · d(u, v) .

(1)

It is composed of the routing cost inside the subtrees T1
and T2 of Tuv, respectively, and the routing cost effected
by the shortest paths using the edge uv between the two
trees. Since the total sum of demands for these paths
equals C1 · C2, the edge uv contributes a total amount
of C1 ·C2 ·d(u, v) to the routing cost. Furthermore, each
shortest path starting at u′ in T1 and ending at u can be
extended to a shortest path ending at some vertex v′ in
T2. Hence, each shortest path of this kind contributes
its length, weighted by its demand c(u′) and the total
sum of the demands C2 in T2, to the routing cost. The
situation is symmetrical for the paths starting in T2 and
ending at v.

Since the routing costs of T1 and T2 do not depend on
the choice of the link between the two trees, our problem
is equivalent to minimizing the remaining summands in
equation (1).

We define the weight of a vertex u ∈ V1, denoted
by w(u), as the sum of lengths of all shortest paths
starting at u′ ∈ V1 and ending at u, weighted by the
demand of u′, i.e.,

w(u) =
∑

u′∈V1

c(u′) · dT1
(u′, u) .

We define the weight of a vertex v ∈ V2, denoted by
w(v), analogously. Hence, we seek to minimize the term

rc′(Tuv) = C2w(u) + C1w(v) + C1 · C2 · d(u, v) (2)

over all possible combinations of u ∈ V1 and v ∈ V2.
The weights of the trees can be computed in linear

time as follows. First we compute the total demands in
T1 and T2, respectively. We compute the weights in T1
by rooting the tree in some vertex r and performing one
bottom-up pass over the tree, followed by a top-down
pass. For a vertex u in T1 we denote the subtree rooted
in u by Tu.

In the bottom-up pass, we compute two values for
each vertex u ∈ V1: the total demand γ(u) of the ver-
tices in Tu, and the sum λ(u) of the shortest paths start-
ing at some vertex u′ in Tu and ending at u, weighted
by the demand of u′, i.e.,

γ(u) =
∑

u′∈V (Tu)

c(u′)
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and

λ(u) =
∑

u′∈V (Tu)

c(u′)d(u′, u) .

For a vertex u with children u1, . . . , uk these values can
be computed in linear time as

γ(u) = c(u) +

k∑
i=1

γ(ui)

and

λ(u) =

k∑
i=1

(
λ(ui) + γ(ui) · d(ui, u)

)
,

respectively. In the top-down pass, we compute the
weight for each vertex v ∈ V1. For the root r this weight
is equal to λ(r). For a vertex v with father u ∈ V1 the
weight can be computed by

w(v) = w(u) + (C1 − 2γ(v))d(u, v) .

This equation is due to the fact that the weight of v is
obtained from the weight of u by removing the demand
γ(v) in the subtree of v from the edge uv and adding
the remaining demand C1−γ(v) to the edge uv. For T2
we proceed analogously.

Having this, we can compute the best and second-
best connection between the two trees by enumerating
all possible pairs uv such that u ∈ V1 and v ∈ V2, which
yields a total running time of O(n1 · n2). Note, that
the described algorithm only finds the best or second-
best solution, but does not compute the routing cost of
this solution. If we have no restriction on the distance
between the vertices, however, the algorithm is optimal.

Theorem 1 The optimal routing cost augmentation
problem and the optimal routing cost replacement prob-
lem can be solved in O(n1 ·n2) time for general distance
function. This is optimal in the algebraic decision tree
model.

Proof. We have already outlined the algorithm and ar-
gued why it runs within the stated time complexity. It
remains to show the lower bound on the running time.
For this, we assume that we are given a set of inte-
gers a1, . . . , aN . We construct an instance of the opti-
mal routing cost augmentation problem such that find-
ing the minimum routing cost connection between the
two trees is equivalent to the minimum of the numbers
a1, . . . , aN . For this problem, we need at least N − 1
comparisons in the algebraic decision tree model of com-
putation.

Let N = n1n2 be any factorization of N and let V be
a set of n1 + n2 vertices. Further, let V1, V2 ⊆ V be a

partition of V such that |V1| = n1 and |V2| = n2 and let
T1 and T2 be two arbitrary trees on V1 and V2, respec-
tively. We set the distance between two vertices in the
same tree equal to one. Let x : V1 × V2 → {a1, . . . , aN}
be a bijective mapping between the pairs of vertices in
V1 and V2 and the numbers ai. Then we choose the
remaining distances as follows. Let W1 and W2 be the
maximum weights of the vertices in T1 and T2, respec-
tively. For u ∈ V1 and v ∈ V2 we define

d0(u, v) = C2W1 + C1W2 − C2w(u) + C1w(v) .

Further, we set

d(u, v) =
d0(u, v) + x(u, v)

C1C2
.

Then rc′(Tuv) = C2W1 + C1W2 + x(u, v). For both the
augmentation and the replacement problem we need to
compute the minimum routing cost solution. However,
minimizing the routing cost for the given instance is
equivalent to computing the minimum over the values
x(u, v) for u ∈ V1 and v ∈ V2. Hence, in the algebraic
decision tree model of computation, we need at least
n1 ·n2− 1 comparisons, which completes the proof. �

3 An Efficient Algorithm for the Euclidean Metric

The proof for the lower bound in the previous section
crucially exploits the fact that we can choose distances
between the vertices in an arbitrary fashion. If this is
not the case, we can come up with more efficient algo-
rithms.

In this section we consider the case that vertices are
points in the plane and that the considered metric d
is the Euclidean metric. In this case, we can com-
pute the best connection between two trees in O((n1 +
n2) log min{n1, n2}) time. Throughout the section, we
do not distinguish between vertices and points.

Theorem 2 The optimal augmentation problem for
the Euclidean metric can be solved in O((n1 +
n2) log min{n1, n2}) time.

Proof. Without loss of generality we may assume that
n2 ≤ n1. Let σ : R2 → R2 be an isotropic scaling with
scale factor s = C1 · C2, i.e., σ scales distances by a
factor s and we thus have

d(σu, σv) = C1 · C2 · d(u, v) . (3)

Let σV1 and σV2 denote the scaled sets of points.
For x ∈ R2 and ṽ ∈ σV2 we define a new distance

function, defined by d+(x, ṽ) := d(x, ṽ)+C1·w(v), where
w is defined as in the previous section. The additively
weighted Voronoi cell of ṽ is the locus of points

{x ∈ R2 | ∀ũ ∈ σV2 \ {ṽ} : d+(x, ṽ) < d+(x, ũ)} (4)
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The additively weighted Voronoi diagram V defined
by d+ consists of the additively weighted Voronoi cells of
the points in σV2 and can be computed in O(n2 log n2)
time [4].

For each point u ∈ V1, we locate the nearest neighbor
σv of σu in V using an algorithm with O(log n2) query
time described by Kirkpatrick [7]. Then σv satisfies

d+(σu, σv) = min
v′∈V2

d+(σu, σv′) (5)

and we have

d+(σu, σv) = d(σu, σv) + C1 · w(v) (6)

= C1 · C2 · d(u, v) + C1 · w(v) . (7)

Hence, v ∈ V2 is the best endpoint of an edge starting
at u ∈ V1 with respect to routing cost. Minimizing
C2 ·w(u)+d+(σu, σv) over all vertices σu ∈ V1 and their
respective nearest neighbor σv ∈ V2 will thus minimize
the overall routing cost. The resulting overall running
time is O(n1 log n2 + n2 log n2). �

In order to solve the replacement problem, we also
need to compute the second-best solution. We can do
this as follows. Let u∗ ∈ V1 and v∗ ∈ V2 be the best solu-
tion computed by the algorithm above. This algorithm
can trivially be modified to simultaneously compute

min
u∈V1\{u∗},v∈V2

rc′(Tuv)

in the same time complexity. By additionally computing
the Voronoi diagram only for the points in V2 \{v∗} and
repeating the algorithm on this instance, we can also
compute

min
u∈V1,v∈V2\{v∗}

rc′(Tuv) .

Clearly, the second-best solution is either of the two.
Hence, we have the following corollary.

Corollary 1 The optimal routing cost replacement
problem for the Euclidean metric can be solved in time
O((n1 + n2) log n2).

Note that the same approach can also be used in a
planar setting, i.e., when the newly introduced edge con-
necting the two trees may not intersect any other edge
of the two trees. In this case we compute an additively
weighted constrained Voronoi diagram, which can be
done by adapting Fortune’s sweepline algorithm [4] with
O(n log n) running time. In a constrained Voronoi di-
agram, we are given an additional set of line segments
representing obstacles. Whenever the straight line con-
necting two points intersects one of the obstacles, the
distance between the two points is assumed to be infin-
ity, otherwise, it is equal to the (weighted) Euclidean

distance between the points. In our application each
edge defined by one of the trees is one such obstacle.
Seidel shows how to adapt Fortune’s algorithm to com-
pute the constrained Voronoi diagram [9]. The adap-
tion to additively weighted sites has been sketched in
Fortune’s original paper [4].

Corollary 2 The planar augmentation problem for the
Euclidean metric can be solved in O((n1 + n2) log n2)
time.

4 General Metrics

Every finite metric d can be encoded by a finite graph
M = (V,D) where each edge e ∈ D has some length
`(e) and the distance d between two vertices in V is
equal to the sum of the lengths of the shortest path
between the vertices in the graph in terms of the edge
lengths. We can directly translate our idea from the pre-
vious section to this setting by computing the additively
weighted Voronoi diagram in M instead. Although the
computation of various Voronoi diagrams on graphs has
been considered by Hurtado et al. [5], among them a
multiplicatively weighted Voronoi diagram, we are not
aware of any investigation of the additively weighted
Voronoi diagram on graphs. The following theorem is
similar to the results by Hurtado et al. [5]. We assume
that the additively weighted Voronoi diagram of a a set
of sites S ⊆ V on a metric graph G = (V,E) is com-
pletely known if every vertex v ∈ V \S knows its nearest
neighbor in S and we know the bisector point for each
edge, if it exists.

Theorem 3 The additively weighted Voronoi diagram
of a set of sites S ⊆ V on a graph G = (V,E) has
complexity Θ(m) and can be computed in time O(m +
n log n).

Proof. Each edge of the graph contains at most one
bisector point, since moving along the edge will alter
the additively weighted distances by the same amount—
either increasing or decreasing—for all distances. Hence
we have at most m bisector points. On the other
hand, we can have exactly m bisectors by setting V ′ =
V . Hence, the complexity of the additively weighted
Voronoi diagram is Θ(m).

To compute the additively weighted Voronoi diagram
in G we use the parallel Dijkstra algorithm proposed by
Erwig [2] with running time O(m+n log n). To compute
the diagram, we run Dijkstra’s algorithm in parallel us-
ing the vertices in S as starting points. For a vertex
v ∈ V \S and some vertex s ∈ S the distance between v
and s is ds(v, s) = dG(v, s) + w(s). Whenever a vertex
v ∈ V \S is settled, we update its closest neighbor in S.
The bisector points can be computed in O(m) time from
this information. �
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Using this result, we can almost directly translate the
technique for the Euclidean case to the general metric
case studied in this section.

Theorem 4 The optimal routing cost augmentation
problem for general metrics can be solved in time O(m+
n log n) if the metric is given by a graph M = (V,D)
with edge length function `.

Proof. Instead of scaling the point set as in the Eu-
clidean case, we scale the lengths of the edges in G by
a factor C1C2, i.e., instead of using ` to assess the dis-
tance between two vertices in M , we use C1C2`. The
rest of the proof is completely analogous. We compute
the additively weighted Voronoi diagram on M for the
set of sites V2. Then we locate the vertex u ∈ V1 that
minimizes C2 · w(u) + d+(u, v) where d+(u, v) is the
scaled and additively weighted distance between u and
its closest neighbor v. The resulting time complexity is
O(m+ n log n). �

Again we can proceed as in the Euclidean case in
order to compute the second-best connection between
the two trees.

Corollary 3 The optimal routing cost replacement
problem for general metrics can be solved in time O(m+
n log n) if the metric is given by a graph M = (V,D)
with edge length function `.

Although this result does not provide an asymptotic
improvement in the worst-case, it does show that we
can efficiently solve the augmentation problem for com-
pactly representable metrics. If the graph representing
the metric is sparse, then the above theorem states that
we can solve the augmentation problem in O(n log n) as
in the Euclidean case.

5 Comments and Open Problems

We have studied a special class of augmentation prob-
lems, where the goal is to find the best connection be-
tween two disconnected trees in terms of routing cost.
Although the problem can not be solved in subquadratic
time for general distance functions in the algebraic de-
cision tree model, it can be solved in O(n log n) time for
the Euclidean metric and sparse graph metrics.

It is an open question, for which graph metrics the
problem can be solved in sub-quadratic time. Also,
there are some interesting variants of the problem, for
instance, when there are more than two disconnected
trees. This problem arises, when a vertex of the net-
work fails to work. Additionally, we could consider a
Steiner-variant of the problem, in which we are allowed
to introduce an additional vertex to which the discon-
nected components must be connected.
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