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Illumination problems on translation surfaces with planar infinities

Nikolay Dimitrov ∗

Abstract

In the current article we discuss an illumination prob-
lem proposed by Urrutia and Zaks. The focus is on
configurations of finitely many two-sided mirrors in the
plane together with a source of light placed at an arbi-
trary point. In this setting, we study the regions unillu-
minated by the source. In the case of rational-π angles
between the mirrors, a planar configuration gives rise to
a surface with a translation structure and a number of
planar infinities. We show that on a surface of this type
with at least two infinities, one can find plenty of unillu-
minated regions isometric to unbounded planar sectors.
In addition, we establish that the non-bijectivity of a
certain circle map implies the existence of unbounded
dark sectors for rational planar mirror configurations
illuminated by a light-source.

1 Introduction

Consider a planar domain with a light reflecting bound-
ary. Place a source of light at a point inside the do-
main. Assume that the source emits rays in all direc-
tions. Each ray follows a straight line and whenever it
reaches the boundary it is reflected according to the rule
that the angle of incidence equals the angle of reflection.
A point from the domain is considered illuminated by
the source whenever there is a ray that reaches the point
either directly or after a series of reflections. In this set-
ting, one can ask the following questions, also known as
illumination problems.

Question 1 If we place the source of light at any point
in the domain, will all of the domain be illuminated?
If not, what could be said about the non-illuminated re-
gions?

Question 2 Is there a point from which the light source
can illuminate the entire domain?

These problems are often attributed to E. Straus
who posed them sometime in the early fifties and first
published by V. Klee in 1969 [5]. Some famous ex-
amples and interesting results are Penrose’s room [1],
Tokarsky’s example [5] as well as the article [3] by Hu-
bert, Schmoll and Troubetzkoy on illumination on Veech
surfaces.
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In 1991, J. Urrutia and J. Zaks proposed the follow-
ing problem [6]. Assume we are given a finite number
of disjoint compact line segments in the plane each rep-
resenting a mirror that reflects light on both sides (a
two-sided mirror). Let p0 be any point on the plane not
incident to any of the segments. Then, the complement
of the set of mirrors is an unbounded domain with light-
reflecting boundary and if we place a source of light S
at p0 we can pose questions 1 and 2. Figure 1a depicts
an example of a two-sided mirror configuration with a
light emitting source S. The convex hull of the mirrors
is a polygon. If S is in the convex hull, one can con-
struct a triangle P unilluminated by S, like the shaded
one on figure 1b. To do that, it is sufficient for a mirror
segment to be an edge of the convex hull.
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Figure 1:

In this paper we are interested in finite two-sided mir-
ror configurations with the following property: any pair
of lines determined by the mirror segments are either
parallel or intersect at an angle which is a rational mul-
tiple of π. We will call such a configuration a rational
mirror configuration and the domain obtained as a com-
plement of the mirrors will be called rational mirror do-
main. For those, we will find conditions that will guar-
antee the existence of unbounded unilluminated sectors
in the plane (see definition 2).

A rational mirror domain can be ”unfolded” into a
surface that carries a flat metric with conical singulari-
ties and trivial holonomy group (see section 3 or [2, 4]).
This means that the surface has a special atlas, called
a translation atlas, with the property that away from
the cone points, the transition maps between two charts
from the atlas are Euclidean translations (section 3 or
[2, 4]). As a result, the piecewise linear trajectory of
a light ray in the original domain becomes a smooth
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geodesic on the flat surface. Thus, one can think of a
light source placed at a nonsingular point on the surface,
emitting geodesic rays in all directions. Any other point
is considered illuminated if there is a smooth geodesic
connecting the source to the point. In this way, one can
ask questions 1 and 2 for the surface. Notice that there
are regions on it isometric to complements of compact
sets in the plane. We will call a surface with such a
geometry a translation surface with planar infinities.

A translation surface with planar infinities gives rise
to a pair (X,ω) where X is a closed surface with a com-
plex structure and ω is a meromorphic differential on
X with only double poles and zero residues. The ze-
roes of ω are the cone points of the flat structure [2, 4],
and around each pole the surface looks like the com-
plement of a compact set in the plane. The converse
is also true. A pair (X,ω) of a closed Riemann surface
and a meromorphic differential with only double poles
and zero residues induces a translation structure on X
with planar infinities. We have provided more details,
definitions and constructions in section 3. For a good
introduction to the theory of polygonal billiards and
translation surfaces, we recommend [2] and [4].

Definition 1 The pair (X,ω) is called a translation
surface with planar infinities whenever the following
conditions hold:

(1) X is a closed surface with a complex structure;

(2) ω is a meromorphic differential on X;

(3) Every pole of ω is of order exactly 2 and the residue
at that pole is zero. We will refer to the poles of ω as
planar infinities.

In this study we would like to show non-illumination
of a special type of domains both on a translation sur-
face with planar infinities and in the plane.

Definition 2 a) Let l1 and l2 be two half-lines in the
plane both starting form a point p0 and going to infinity.
Let θ be the angle between l1 and l2 at the vertex p0,
measured counterclockwise from l1 to l2. Then, the open
region C bounded by l1 and l2, whose internal angle at
p0 is θ, is called an infinite sector of angle θ (see figure
2a).

b) An open subdomain C of a translation surface with
planar infinities (X,ω) is called an infinite sector of an-
gle θ whenever there exists a chart from the translation
atlas of (X,ω) that maps C isometrically to a planar
infinite sector of angle θ like the one defined in point a.

On any translation surface (X,ω) one can always
find an orientable foliation Fω with singularities, whose
leaves are geodesics. Indeed, let us foliate the Euclidean
plane into horizontal straight lines, oriented as usual
from left to right. Since each transition map between

two charts is a Euclidean translation, it sends horizon-
tal lines to horizontal lines (line orientation preserved).
Thus, pulling back onto the surface the planar horizon-
tal foliation from all translation charts defines globally
the desired foliation Fω. Moreover, the singularities of
Fω are the cone points of the surface (X,ω), i.e. the
zeroes of the differential ω. We call Fω the horizontal
foliation of the surface and its leaves - the horizontal
geodesics of the surface. At each non-singular point p0
of (X,ω) the oriented horizontal geodesic lp0(0) from Fω
defines a positive horizontal direction at p0. The coun-
terclockwise angle α between lp0(0) and an arbitrary
oriented geodesic lp0(α) through p0 is called the direc-
tion of lp0(α) at p0 (see figure 2b). From now on, lp0(α)
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denotes the geodesic ray on (X,ω) starting from p0 ∈ X
and going in the direction of angle α. It is important to
emphasize that, since we are working with a translation
surface, the intersection of the geodesic lp0(α) with any
other horizontal geodesic lq(0) will always form the same
angle α, as shown locally on figure 2b. In other words,
just like in the plane, a geodesic on (X,ω) does not
changes its angle with respect to the horizontal direc-
tion. Since a direction at any non-singular point p ∈ X
is defined as an angle α ∈ R mod 2π, we can iden-
tify the set of all directions at p with the unit circle
S1 = {z ∈ C : |z| = 1}. The point 1 ∈ S1 gives the
horizontal direction α = 0.

2 Results

It is natural to ask questions about the behavior of the
geodesics on a surface. The first question we will address
is the following. On a translation surface with planar
infinities, where do most geodesics emanating from a
nonsingular point go? As it turns out, almost all of
them fall onto the poles of the surface. Same is true for
any rational mirror configuration in the plane.

Theorem 1 The following two statements are true:

(1) Let (X,ω) be a translation surface with planar in-
finities and let p0 ∈ X be non-singular. Then the set
of all directions α ∈ S1, for which the geodesic passing
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through p0 in direction α goes to one of the poles of ω,
is open and dense in the circle S1;

(2) Assume we are given a rational mirror configuration
in the plane and let p0 be a point not lying on any of the
mirrors. Then the set of all directions α ∈ S1, for which
the piece-wise linear reflected trajectory starting from p0
in direction α goes to infinity, is open and dense in the
circle S1.

The next result establishes the existence of infinite
unilluminated sectors and large unbounded regions on
translation surfaces with more than one planar infinity.

Theorem 2 Let (X,ω) be a translation surface with
at least two planar infinities. Then, for any point p0
on X \ (zeroes(ω) ∪ poles(ω)) there exists an infinite
sector C on (X,ω) unilluminated by p0, i.e. for any
point p ∈ C there is no smooth geodesic on (X,ω) that
connects p0 to p. Moreover, there exists a region on
(X,ω) consisting of unilluminated, non-overlapping in-
finite sectors of total angle 2π(k − 1), where k is the
number of poles of ω.

The main ideas used in the proof of theorem 2 can be
adjusted to the study of illumination problems for ra-
tional mirror configurations in the plane. For instance,
an interesting question put in an every day language, is
the following. How big of an object can be hidden from
a stationary observer in a rational mirror domain? Can
we hide a car? A whole parking lot of cars? Precisely
speaking, we would like to find a basic condition that
will ensure the existence of an infinite unilluminated sec-
tor for a light source placed at a point inside a rational
mirror domain.

Let D be a rational mirror domain and let p0 ∈ D.
Draw a large enough circle K, so that its interior con-
tains the mirrors from the configuration and the light
source at the point p0. Denote by Up0 the open dense
set of all directions which go to infinity, provided by the-
orem 1. For an angle α ∈ Up0 ⊂ S1 follow the straight
line lp0(α) starting form p0 in direction of α. Whenever
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the line reaches a mirror it is reflected, changing its
direction. In this way, a piecewise linear trajectory is

formed, which at some point leaves the disc bounded by
K never to come back to it. Denote by fp0(α) the angle
between the horizontal direction of C and the portion
of the trajectory that is outside the circle K. As a re-
sult, we obtain a map fp0 : Up0 −→ S1. For a picture
of the construction of fp0 see figure 3. The map fp0 is
defined almost everywhere on the unit circle. In fact,
its domain Up0 is open and dense in S1. Moreover, fp0
is a rotation when restricted to any connected compo-
nent of Up0 . Our hope is that finding ways to study the
combinatorial properties of fp0 may facilitate the search
for unbounded unilluminated sectors in rational mirror
domains.

Theorem 3 Assume we are given a rational mirror
configuration. For an arbitrary point p0 not on any of
the mirrors, consider the circle map fp0 (see figure 3).
If fp0 is not injective, then there exists an infinite sector
in the plane unilluminated by p0.

3 Translation surfaces.

In the current section we discuss translation surfaces
and show how to construct one from a rational mirror
configuration. To illustrate the idea better, we apply
the procedure to an example.

Various descriptions. A translation surface is a closed
surface X with a finite set of points Σ ⊂ X, called
singularities, and a cover of X \ Σ by open charts
{(Wa, ϕa) | Wa ⊆ X \ Σ , ϕa : Wa → C} having the
property that whenever Wa ∩ Wb 6= ∅ the transition
map between the two charts (Wa, ϕa) and (Wb, ϕb) is a
Euclidean translation, i.e. zb = ϕ−1b ◦ ϕa(za) = za + c.
In our study, Σ partitions into two subsets Σ0 and Σ∞.
Each point from Σ0 has a cone angle of 2πN , where N is
a positive integer. Each point p∞ form Σ∞ has an open
neighborhood W ′ ⊂ X with a map ϕ∞ : W ′\{p∞} → C
such that (W ′ \ {p∞}, ϕ∞) is a translation chart from
the atlas and the set C \ ϕ∞(W ′ \ {p∞}) is compact.
Thus, the collection Σ∞ contains all planar infinities on
the surface.

Since translations are holomorphic maps, the transla-
tion atlas induces a complex structure on X (for details
see [2] and [4]). Moreover, the differential dza in each
ϕ(Wa) ⊂ C can be pulled back as a holomorphic dif-
ferential ωa = ϕ∗adza in the corresponding Wa. But if
zb = ϕ−1b ◦ ϕa(za) = za + c then dzb = dza. Hence,
ωa = ωb in any intersection Wa ∩Wb 6= ∅ which gives
rise to a global holomorphic differential ω on X \ Σ.
Moreover, ω extends to the singular set Σ so that Σ0

becomes the set of zeroes of ω and Σ∞ becomes the set
of all poles of ω. The latter are all double and with
residue 0. So we see that a translation surface with
planar infinities induces a pair (X,ω) of a compact Rie-
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mann surface without boundary together with an ap-
propriate meromorphic differential.

To recover the translation atlas from a pair (X,ω),
one can cover X \(zeroes(ω)) with topological discs Wa.
On each of them define the chart ϕa(p) =

∫ p
pa
ω, where

pa ∈ Wa is fixed and p varies in Wa. As ω is either
holomorphic or meromorphic with a double pole and
residue 0 inside the topological disc Wa, the path of
integration in Wa\poles(ω) is arbitrary. If Wa∩Wb 6= ∅
then zb =

∫ p
pb
ω =

∫ p
pa
ω+

∫ pa
pb
ω = za+c for p ∈Wa∩Wb.

Thus, we have obtained the desired translation atlas. As
we can see, the description of a translation surface with
planar infinities which we gave in the beginning of the
current section is equivalent to definition 1.

The horizontal foliation Fω on X, mentioned in the
introduction, is defined as follows. Let FC be the fo-
liation of horizontal lines {z ∈ C | Im(z) = s}, s ∈ R
in C oriented from left to right (see figure 2b). Define
the pulled-back local foliation Fa = ϕ∗aFC in each Wa.
Observe that FC is invariant with respect to any trans-
lation, i.e. the translations map any horizontal line to a
horizontal line. Hence, Fa = Fb on each Wa ∩Wb 6= ∅.
Thus, all local foliations fit together in a global foliation
Fω on X with geodesic leaves and singularities Σ. The
oriented leaves of Fω determine globally a horizontal
direction on (X,ω). Since translations are Euclidean
isometries, the Euclidean metric on C induces a Eu-
clidean metric on X \ Σ. In this metric geodesics that
do not go through singularities are isometric to straight
lines in C. The notion of a direction at a non-singular
point p ∈ X is as defined in the introduction. It is the
counterclockwise angle between the horizontal leaf and
an oriented geodesic both passing through p. Finally, an
oriented geodesic always forms the same angle with any
horizontal leaf it intersects, so it never self-intersects,
except possibly to close up.
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Construction. Assume we have a configuration of dis-
joint compact line segments I1, ..., Im in the plane C,
which we regard as two-sided mirrors. The angle be-
tween any two of them is a rational-multiple of π. Ob-
serve that if one of the mirrors forms a rational-π angle
with the rest of the mirrors, then immediately follows

that any pair of mirrors forms a rational-π angle. This
is a consequence of the fact that in an Euclidean triangle
the angles at the vertices sum up to π.

To understand better the construction that follows,
one could have a simple toy-example in mind. Let us
have two perpendicular mirrors I1 and I2 in the plane
C like the ones depicted on figure 4.

Begin by slicing C along the segments I1, ..., In to
obtain a closed slitted domain D∗ in which every mirror
segment Ik is doubled in order to obtain two parallel
copies I+k and I−k that form the boundary component
of the surface D∗ around the slit Ik. For an intuitive
geometric picture of D∗ in the case of the toy-example,
look at figure 4. Then D∗ is homeomorphic to a once-
punctured sphere with n disjoint open discs removed, as
shown on figure 5 for the case of two orthogonal mirrors.
In particular, ∂D∗ = tnk=1(I+k ∪ I

−
k ).
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For each segment Ik, fix the line lk ⊂ C through 0 ∈
C parallel to Ik. Denote by σk the reflection of C in
lk. The group G generated by all σk, k = 1, .., n is
a finite group. If α1 is a generic direction in C, then
G(α1) = {g(α1) | g ∈ G} = {α1, ..., αm} is an orbit of
maximal length m ≤ n. In our example G ∼= Z4 and a
generic orbit has 4 elements. Pick m copies D∗j of D∗

each with a choice of a direction αj in it. If you prefer
more formally, let D∗j = (D∗, αj). On figure 5, in the
case of the toy-example, we can see a topological model
of these four slitted planes with a choice of direction on
each of them. We glue D∗i to D∗j if and only if there
is a segment Ik ⊂ C whose corresponding reflection σk
satisfies σk(αi) = αj . The gluing is done in the following
way. Take D∗i and σk(D∗j ). Glue the edge I+k ⊂ D∗i to

the edge σk(I+k ) ⊂ σk(D∗j ) and the edge I−k ⊂ D∗i to

the edge of σk(I−k ) ⊂ σk(D∗j ). On figure 4 of the toy-
example, we have chosen i = 1 and j = 2. The upper
edge I+1 ⊂ D1 of the cut I1 is glued to the lower edge
σ1(I+1 ) ⊂ σ1(D∗2) of the cut σ1(I1). Analogously, the
lower edge I−1 from D∗1 is glued to upper edge σ(I−1 )
from σ1(D∗2).

Both D∗i and σk(D∗j ) are naturally translation sur-
faces with piecewise geodesic boundaries, global coor-
dinates zi and zj , and differentials dzi and dzj respec-
tively. Segments Ik and σk(Ik) are equal and parallel,
hence the gluing map is a translation zj = zi + c (see
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the gluing of the shaded pieces on figure 4). There-
fore the resulting surface made out of D∗i and σk(D∗j )
has a translation structure. Moreover, dzj = dzi along
the gluing locus, so there is a well-defined holomorphic
differential on the new surface which extends meromor-
phically to both of its infinity points.

Now, follow the described gluing procedure for all cuts
on the pieces D∗j , where j = 1, ..,m. The final result is a
closed Riemann surface X and a meromorphic differen-
tial ω with only double poles and zero residues, as well
as simple zeroes with cone angle 4π. For the example
of the two orthogonal mirrors, figure 5 illustrates how
the four pieces D∗1 , ..., D

∗
4 fit together to form a compact

torus X with a complex structure and a meromorphic
differential ω on X. There are eight simple zeroes of
ω and four double poles. The zeroes are obtained from
identifying pairs of black vertices on the segments Ik
form figure 4. The cone angle at each zero is 4π and the
residue at each pole is 0 as desired.

4 Proofs

Proof of theorem 1. From now on (X,ω) is an ar-
bitrary translation surface with planar infinities and
p0 ∈ X \ (zeroes(ω)∪poles(ω) any fixed point. The idea
is to cut out a rectangle around each pole∞j ∈ poles(ω)
and replace it by a one-handle. Indeed, choose a small

∞ j ∞ j

ω(X, ) ω(X, )~
~

φ

φ 1- W

Figure 6:

topological disc W around ∞j and map it to C by
ϕ(p) =

∫ p
q0
ω where p varies in W and q0 ∈ W is fixed.

Notice, ϕ is well defined as the residue at∞j is 0, so the
path of integration is irrelevant. The image ϕ(W ) ⊂ C
is the complement of a compact set (the total shaded
region on figure 6 stretching to infinity). Draw a rect-
angle Q ⊂ ϕ(W ) as shown on figure 6 and remove its
exterior (the darker region). On the surface, we remove
the darker rectangular domain containing ∞j . Then
glue together the lower horizontal edge of Q to the up-
per and the left to the right, like gluing a torus. The
gluing maps are clearly a vertical and a horizontal trans-
lation respectively. Therefore we obtain a handle with a
translation structure compatible with the structure on
the rest of the surface (see figure 6). By doing this for
each∞j , we obtain a compact translation surface (X̃, ω̃)

of genus(X̃) = genus(X) + ](poles(ω)), where ω̃ is now
holomorphic (has no poles). A lot is known about the
behavior of the geodesics on such surfaces [2], [4], [7], so

we use this knowledge in our advantage. Let Λ̃p0 be the

set of all directions θ ∈ S1 for which the geodesic l̃p0(θ)

on X̃ is closed or hits a zero of ω̃. Also, let Ξ̃ be the set
of all directions θ ∈ S1 for which the geodesic flow of
(X̃, ω̃) in direction of θ is minimal [4] (e.g. an ergodic
flow is minimal [2],[4]). Then Λ̃p0 is countable but dense

in S1 (see [7]) and Ξ̃ is dense and of full measure in S1

(see [4], [2]). As a result, the set Θ̃p0 = Ξ̃ \ Λ̃p0 consists

of all θ ∈ S1 for which the geodesic ray l̃p0(θ) is dense

in X̃. Moreover, Θ̃p0 is dense and of full measure in S1.

Therefore, for any θ ∈ Θ̃p0 the corresponding geodesic
ray lp0(θ) on the original surface (X,ω) hits a pole of ω.

Let Up0 ⊂ S1 be the set of all directions θ ∈ S1 with
the property that the geodesic ray lp0(θ) on (X,ω) in
the direction of θ reaches a pole of ω. Since the geodesic
flow on (X,ω) depends continuously on the initial point
and direction, the condition that a geodesic ray reaches
a planar infinity is open. Therefore, for each θ ∈ Up0
there exists an open circular interval (α, β) ⊂ Up0 that
contains θ and for any θ′ ∈ (α, β) the ray lp0(θ′) also
reaches the same infinity. Hence, Up0 is open in S1.

Moreover, the dense set of full measure Θ̃p0 is contained
in Up0 . Therefore, Up0 is open and dense set of full
measure in S1.

The second part of theorem 1 follows from the first
one. If we are given a rational mirror configuration,
unfold it into a translation surface with planar infinities
(X,ω) as described earlier. Then, the infinity of the
mirror domain lifts to the set of poles of ω on X and we
apply the first part of the theorem.

Proof of theorem 2. As an open dense subset of S1,
the constructed Up0 is a countable disjoint union of open
circular intervals (αj , βj) ⊂ S1, i.e. Up0 = t∞j=1(αj , βj).
By construction, the geodesic rays lp0(θ) emitted from
p0 in all directions θ ∈ (αj , βj) go to the same pole of ω.
Fix some j and take a subinterval (α∗, β∗) ⊆ (αj , βj) (it
may even be convenient to choose (α∗, β∗) = (αj , βj)).
Choose (α∗, β∗) so that its measure is less than π. No-
tice, that for every θ ∈ (α∗, β∗), each ray lp0(θ) on
X goes to the same ∞∗ ∈ poles(ω). In particular,
∞∗ =∞3 on figure 7. As ](poles(ω)) ≥ 2, take another
∞ ∈ poles(ω)\{∞∗} and call it∞1 just like on our pic-
ture below. Choose a ”small” topological disc W around
∞1 with the property W ∩ (zeroes(ω) ∪ poles(ω)) =
{∞1}. Define the translation chart ϕ(p) =

∫ p
q0
ω, where

p varies in W and q0 ∈ W is fixed. The zero residue at
∞1 guaranties independence of the integral on the path
between q0 and p in W . On figure 7 we have also pro-
vided an analogous chart ψ around p0. From now on,
we use the same notations in W as the ones in ϕ(W ).
Thus, we identify W with ϕ(W ). In C the domain W
looks like the complement of a compact set (the shaded
region on figure 7). Let K ⊂ W be a Euclidean circle
in C centered at O and containing C \W in its interior.
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Abusing notation, let α∗ and β∗ be the two points
on the circle K such that the counter-clockwise angles
between the positive horizontal line through O in C and
the radii Oα∗ and Oβ∗ are respectively α∗ and β∗. Let
points T1 and T2 on K be such that counter-clockwise
]α∗OT1 = ]T2Oβ∗ = π

2 . Draw the lines t1 and t2
tangent to circle K at T1 and T2 respectively. Then
they bound an infinite sector C, depicted on figure 7 as
a darker shaded region.

∞1

∞2

∞3

∞4

p
0

W φ

ψ

β*
θ

lp
0
( )β*

lp
0
( )α*

Figure 7:

We claim that that C ⊂ X is not illuminated by
p0. Assume that for some point p ∈ C there exists
θ ∈ S1 such that the geodesic lp0(θ) ⊂ X staring from
p0 in the direction of θ passes through p. Then, clearly
lp0(θ) goes to ∞1. As already commented in the intro-
duction, any smooth geodesic on a translation surface
forms the same angle with the horizontal direction at
every point it passes through. In particular, the angle
between lp0(θ) and the horizontal direction in the chart
W as well as near the point p0 is always θ. By looking
at the picture of the chart W on figure 7, we see that
θ ∈ (α∗, β∗) in W . Hence θ ∈ (α∗, β∗) ⊂ S1 at the
point p0 as well. By the choice of the circular interval
(α∗, β∗), the geodesic ray lp0(θ) should go to∞∗ 6=∞1.
But a geodesic ray can only reach one pole of ω, so we
get to a contradiction. Therefore, the infinite sector C
on (X,ω) is not illuminated by p0 ∈ X.

To conclude the proof, notice that for each circular
interval (α∗, β∗) ⊂ Up0 the unilluminated sector C near
∞1 can be also constructed around any other pole∞ 6=
∞∗ of ω, i.e. there are k − 1 unilluminated copies of
C. Partition Up0 into disjoint subintervals for which
we can apply the construction of unilluminated infinite
sectors from the preceding two paragraphs. Thus, the
the total sum of the angles of all unilluminated sectors
constructed on (X,ω) is k−1 times the total measure of
Up0 ⊂ S1 which is 2π. Hence, the total angle is 2π(k−1).

Proof of theorem 3. Let D ⊂ C be a rational mir-
ror domain and p0 ∈ D (see figure 1 or 3). Recall the
finite group G generated by all reflections in the lines
through 0 ∈ C parallel to the mirrors. It acts on S1 by

rotations. Let fp0 : Up0 → S1 be the map described at
the end of subsection ”Main results” (see also figure 3)
and assume it is not injective. Then, there are θ1 6= θ2
from Up0 such that fp0(θ1) = fp0(θ2). Take the finite
orbit G(θ1) = {g(θ) ∈ S1 | g ∈ G}. Then θ ∈ G(θ1)
if and only if fp0(θ) ∈ G(θ1) so θ2 ∈ G(θ1). Hence,
the restriction f|G(θ1)

: G(θ1) → G(θ1) is not bijective

and there is θ∗ ∈ G(θ1) such that θ∗ ∈ Up0 \ fp0(Up0).
Since fp0 is a restriction of a rotation on each con-
nected component of Up0 , there is (α∗, β∗) 3 θ∗ such
that (α∗, β∗) ⊂ Up0 \ fp0(Up0). Remember the circle
K from figure 3 that encompasses the mirrors and p0.
Using the circular interval (α∗, β∗), we can carry out ab-
solutely the same construction as the one in the chart
W described in the proof of theorem 2. For a picture
of this construction look at the rightmost large shaded
area W on figure 7. Observe that the notations of the
current proof match the picture’s notations so that we
can use it directly, thinking that the set of mirrors is in
the little white elliptic region containing the center O.
We claim that the infinite sector C (the darker shaded
area) is not illuminated by the source p0 ∈ D. Indeed,
assume there is a light ray emitted by p0 that reaches
some p ∈ C. Then, from the picture, the direction of
this ray is θ ∈ (α∗, β∗). But the light ray started from
p0 in some direction θ0 ∈ S1, so θ = fp0(θ0) which is a
contradiction.
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