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Abstract

In this note, we shall consider constant factor approxi-
mation algorithms for a variation of the discrete pierc-
ing set problem for unit disks. Here a set of points P
is given; the objective is to choose minimum number of
points in P to pierce all the disks of unit radius centered
at the points in P . We first propose a very simple al-
gorithm that produces a 14-factor approximation result
in O(n log n) time. Next, we improve the approxima-
tion factor to 4 and then to 3. Both algorithms run in
polynomial time.

1 Introduction

The piercing set of a set of objects S in IR2 is a set of
points Q such that each object in S contains at least
one point in Q. Here the problem is, given the set S,
compute a piercing set of minimum size. Let us consider
the intersection graph G = (V,E) of the objects in S.
Its nodes V correspond to the members in S, and an
edge e = (u, v) ∈ E, for a pair of vertices u, v ∈ V
implies that the two objects corresponding to the nodes
u and v intersect. A clique C in the graph G implies
that each pair of objects corresponding to the nodes
in C are intersecting. But, it does not imply that all
of them have a non-empty common intersection region.
In other words, a clique C in G does not imply that
the objects corresponding to the members in C can be
pierced by a single point. However, if S consists of a set
of axis-parallel rectangles, then the minimum piercing
set corresponds to the minimum clique cover 1 of the
intersection graph of the members in S.
The minimum clique cover problem for a set of axis-
parallel unit squares in IR2 is known to be NP-hard [17].
Hochbaum and Maass [16] proposed a PTAS for the
minimum clique cover problem for a set of axis-parallel
unit squares with time complexity nO(1/ε2). The time
complexity was later improved to nO(1/ε) by Feder and
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1The minimum clique cover problem for a graph G = (V, E)

is partitioning the vertex set V into minimum number of subsets
such that the subgraph induced by each subset is a clique.

Greene [13], and by Gonzalez [14]. Chan [5] proposed
a PTAS for squares of arbitrary size with time com-
plexity nO(1/ε2). In fact, this algorithm works for any
collection of fat objects. Chan and Mahmood [6] con-
sidered the problem for a set of axis-parallel rectangles
of fixed height (but of arbitrary width), and proposed a
PTAS with nO(1/ε2) time complexity.
The minimum clique cover problem for unit disk graph
also has a long history. The problem is known to be
NP-hard [9], and a 3-factor approximation algorithm
is easy to obtain [19]. Recently, Dumitrescu and Pach
[12] proposed an O(n2) time randomized algorithm for
the minimum clique cover problem with approximation
ratio 2.16. They also proposed a polynomial time ap-
proximation scheme (PTAS) for this problem that runs
in O(n1/ε2) time. It is an improvement on a previous
PTAS with O(n1/ε4) running time [22].
Since, the disks do not satisfy the Helly’s property2, the
minimum piercing set problem for unit disks is different
from the minimum clique cover problem for unit disk
graph. The minimum piercing set problem for disks has
a lot of applications in wireless communication where
the objective is to place the base stations to cover a
set of radio terminals (sensors) distributed in a region.
The minimum piercing set problem for unit disks is also
NP-hard [3, 12]. Carmi et. al [3] proposed an approx-
imation algorithm for this problem where the approx-
imation factor is 38. In particular, if the points are
distributed below a straight line L, and the base sta-
tions (of same range) are allowed to be installed on or
above L only then a 4-factor approximation algorithm
can be obtained provided all the points lie within an
unit distance from at least one base station.
In the discrete version of the minimum piercing set prob-
lem for unit disks, two sets of points P and Q are given.
The unit disks are centered at the points of P , and the
piercing points need to be chosen from Q. The objective
is to choose minimum number of points from Q to pierce
all the disks in P . The problem is known to be NP-hard
[18]. The first constant factor approximation result on
this problem is proposed by Calinescu et al. [2]. It uses
linear programming relaxation method to produce an
108-factor approximation result. The approximation re-

2A set of object has the Helly property if each intersecting
family has a non-empty intersection.
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sult is then improved to 72 in [21], 38 in [3], and 22 in [8].
Finally, Das et al. [10] proposed an 18-factor approxi-
mation algorithm that runs in O(n log n+m logm+mn)
time, where |P | = n and |Q| = m.
Another variation of the discrete piercing set problem
for unit disks assumes Q = P . In other words, the
unit disks corresponding to the points in P need to be
pierced by choosing a minimum number points from P
itself. In the literature, the problem is referred to as
the minimum dominating set problem for the unit disk
graph (or MDS problem in short). Here, an undirected
graph is constructed with nodes corresponding to the
points in P . Between a pair of nodes there is an edge
if the distance between the two points is less than or
equal to their common radius. A vertex in the graph
dominates itself and all its neighbors. The objective is
to choose minimum number of vertices to dominate all
the vertices in the graph.
The problem is known to be NP-hard [7]. Ambuhl
et al. [1] first proposed an approximation algorithm
for this problem. They considered the weighted ver-
sion of the problem where each node is attached with
a positive weight. The objective is to find the mini-
mum weight dominating set of the nodes in the graph.
The approximation factor of their proposed algorithm
is 72. Huang et al. [15] improved the approximation
factor of the same problem to 6 + ε. Dai and Yu [11]
further improved the approximation factor to 5 + ε.
Though they have not analyzed the time complexity of
their proposed algorithm, their algorithm needs O(n

9

ε2 )
time. Recently, Zou et al. [23] proposed a polynomial
time 4+ ε factor approximation algorithm. Nieberg and
Hurink [20] proposed an O(nc) time PTAS for comput-
ing the minimum dominating set for unit disk graphs,
where c = (2r + 1)2, and r is an integer satisfying
(2r + 1)2 < (1 + ε)r/2. It accepts any undirected graph
as input, and returns a (1 + ε) factor approximation
solution for the dominating set problem, or a certifi-
cate indicating that the input graph is not a unit disk
graph. For a 2-factor approximation result, the worst-
case running time is obtained by setting ε = 1; in that
case, r will be equal to 22. Thus, the running time is
O(n(2r+1)2) = O(n(2×22+1)2) = O(n2025). Even for a
3-factor approximation result, the worst case time com-
plexity (by putting ε = 2) becomes O(n625). Thus, this
algorithm is not at all tractable from a practical point
of view. Our present work is directed towards finding a
tractable algorithm with a guaranteed constant factor
approximation result. For the unweighted version of the
discrete piercing set problem, the best known result is
a 5-factor approximation algorithm proposed in [4], and
it works for disks of arbitrary radii. This result is then
used for the h-piercing problem, where the objective is
to choose minimum number of points in P to pierce each
disk by at least h points. The proposed approximation

factor was 5(2h − 1).
We propose three methods that use almost similar type
approach for the discrete piercing problem with Q = P .
The first one produces a 14-factor approximation result
in O(n log n) time. The second one produces a 4-factor
solution in O(n9) time, and the last one produces a 3-
factor solution in O(n18) time. Recall that the running
time of the existing algorithm for producing a 3-factor
approximation solution is O(n625) [20]. Thus, our algo-
rithm is a substantial improvement over the existing re-
sults in the literature. We can use this result to improve
the approximation factor for the h-piercing problem [4]
of constant radius disks to 3(2h − 1) from 5(2h − 1).

2 Approximation Algorithms

We are given a set of points P , where each point cor-
responds to a unit disk centered at that point. The
objective is to choose a subset P ′ ⊆ P of minimum car-
dinality such that the disk corresponding to each point
in P contains at least one member of P ′.

2.1 A simple 14-factor approximation algorithm

Consider a partitioning of the plane into a grid whose
each cell is of size 1√

2
× 1√

2
. Since the maximum distance

between any two points in a grid cell is less than or equal
to 1, we can pierce all the disks centered at points of P
in a particular cell by choosing any one member p ∈ P
lying in that cell. In other words, if we draw a disk of
unit radius, and centered at p, it covers all the points
lying inside that cell. Note that, it may cover point(s)
in the other cell(s). But, we show that a disk centered
at a point p ∈ P inside a grid cell may cover (some or
all) points in at most 14 other grid cells.
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11 12 14 15

16 17 18 19 20

21 22 23 24 25
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C D

Figure 1: Discrete piercing set for unit disks

Consider the 5× 5 grid structure as shown in Figure 1.
The length of each side of a cell is 1√

2
. The cells are

numbered as 1, 2, . . . , 25. The cell 13 is split into four
parts, namely A, B, C and D. Observe that, a disk of
radius 1 centered at any point in sub-cell A may cover
(some or all) points in only 15 cells, numbered 2, 3, 4,



CCCG 2011, Toronto ON, August 10–12, 2011

6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18 and 19. The same
fact can be observed for the sub-cells B, C and D. We
can further tighten the observation as stated below.

Observation 1 A single unit disk centered at a point
inside a cell can not cover points in more than 14 cells
simultaneously.

Proof. First we prove that a single unit disk centered
at a point p in the cell A can not cover points in cell
number 4 and 16 simultaneously (see Figure 1).
Let u and v be the bottom-left and top-right corners
of the cells 4 and 16 respectively. Thus, dist(u, v) = 2,
where dist(., .) denotes the Euclidean distance between
a pair of points. Let p be a point properly inside cell A.
Therefore, dist(u, p) + dist(p, v) > 2. This implies that
at least one of dist(u, p) and dist(p, v) is greater than
1. Therefore, the point p can not cover a point inside
cell 4 and a point inside cell 16 simultaneously. Thus,
a single unit disk at a point p ∈ A can cover (some or
all) points in cells numbered 2, 3, 4, 6, 7, 8, 9, 11, 12,
13, 14, 16, 17, 18 and 19, but it can not cover a point
in cell 4 and a point in cell 16 simultaneously.
Similarly, it can be shown that

• a single unit disk centered at a point p ∈ B can
cover (some or all) points in cells numbered 2, 3, 4,
7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 19 and 20, but it
can not cover a point in cell 2 and a point in cell
20 simultaneously.

• a single unit disk centered at a point p ∈ C can
cover (some or all) points in cells numbered 6, 7, 8,
9, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23 and 24, but
it can not cover a point in cell 6 and a point in cell
24 simultaneously.

• a single unit disk centered at a point p ∈ D can
cover (some or all) points in cells numbered 7, 8,
9, 10, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23 and 24
but it can not cover a point in cell 10 and a point
in cell 22 simultaneously.

Thus, the observation follows. �

In our approximation algorithm, we select one point
from each cell that contains at least one point. The
stepwise description of the proposed method is given in
Algorithm 1.

Theorem 1 The approximation factor of our algo-
rithm is 14, and its running time is O(n log n).

Proof. Consider a disk in the optimum solution. By
Observation 1, it can cover points in at most 14 cells.

Algorithm 1 MDS 14-FACTOR(P )
1: Input: Set P of points in a 2-dimensional plane.
2: Output: A Set P ∗ ⊆ P such that the unit disks

centered at points in P ∗ cover all the points in P .
3: Set P ∗ ← ∅.
4: Consider a partitioning of the plane into a grid

whose each cell is of size 1√
2
× 1√

2
.

/* A grid cell (α, β) is said to be less than another
grid cell (γ, δ) if and only if either α < γ or α = γ
and β < δ */

5: Consider a height balanced binary tree T for storing
the non-empty grid cells. Each element of T is a
tuple (α, β) indicating the indices of a non-empty
cell. It is attached with any point pi ∈ P that lies
in that cell (as the piercing point). For each point
pi = (xi, yi) ∈ P , we compute the indices of the grid
cell α = d xi√

2
e and β = d yi√

2
e. If the tuple (α, β) is

not in T , we store it in T and attach pi with it.
Otherwise (i.e., if (α, β) is in T ), we have nothing
to do.

6: for (each node v of T ) do
7: Let p be the point attached to the node v. Set

P ∗ ← p
8: end for
9: return P ∗

But, we have chosen at most 14 different disks to cover
those points. Thus, the approximation factor follows.
In order to justify the time complexity, we shall not
construct the grid explicitly. We maintain a height bal-
anced binary tree T for storing the non-empty grid cells.
The processing of each point requires only the checking
of the corresponding grid cell in T . After processing
all the points in P , we need to visit T for reporting
the piercing points. Thus the time complexity result
follows. �

2.2 Improving the approximation factor to 4

We now show that we can have a 4-factor approximation
algorithm by increasing the worst case running time.
We partition the plane into a grid whose each cell is of
size 3√

2
× 3√

2
as shown in Figure 2(a).

Lemma 2 The minimum piercing set of the unit disks
centered at the points inside a grid cell of size 3√

2
× 3√

2

can be computed in O(n9) time.

Proof. Let us consider a grid cell of size 3√
2
× 3√

2
. We

use χ to denote the cell, and Pχ to denote the set of
points inside this cell. We split χ into 9 subcells of size
1√
2
× 1√

2
(in Figure 2(b) it is shown separately.). In

order to get the minimum cardinality subset of P for
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Figure 2: Proof of Lemma 2

piercing the disks centered at the points in Pχ, we need
to identify the minimum number of points in P such
that the disks centered at those points can cover all the
points in Pχ. Note that, if all the 9 cells are non-empty,
we need at most 9 disks to cover all the points in Pχ.
The reasons are (i) the disk centered at any point inside
a subcell covers all the points inside that subcell, and
(ii) each non-empty subcell of χ can contribute one such
point.
In order to cover the points Pχ, we need to consider the
disks centered at the points in P that lie in χ and the
shaded region around χ as shown in Figure 2(c). Let
this set of points be Qχ. We choose every point of Qχ,
and check whether the disk centered at that point covers
all the points in Pχ. If it fails for all the points in Qχ,
then we choose each pair of points p, q ∈ Qχ and test
whether each point in Pχ lies inside at least one disk
centered at p and q. If it fails again, we need to choose
each triple of points of Qχ and so on. Finally, we need to
choose each tuple of 8 points from Qχ and test whether
each point in Pχ lies inside one of the disks centered to
those 8 points. In each step, the checking needs O(n)
time. Thus, these 8 steps needs in total O(n9) time in
the worst case. If the 8-th step also fails, we choose one
point in each cell arbitrarily, and put a disk centered
at those 9 points. Thus, the time complexity of this
optimal algorithm follows. �

The stepwise description of the method described in
Lemma 2 is given in Algorithm 2. Next, we use the
Algorithm 2 for designing Algorithm 3 for getting a
4-factor approximation result for the discrete piercing
problem.

Algorithm 2 OPT(χ, Pχ, Qχ)

1: Input: The cell χ of size 3√
2
× 3√

2
, set Pχ ⊆ P

of points inside cell χ, and set Qχ ⊆ P of points
such that each unit disk centered at the points in
Qχ covers at least one point in Pχ.

2: Output: Set P ∗ ⊆ Qχ such that the unit disks
centered at points in P ∗ cover all the points in Pχ.

3: Set P ∗ ← ∅ and flag ← false.
4: for (k = 1, 2, . . . , 8) do
5: Choose each k points from each Qχ, and check

whether the disks centered at these k points cover
all the points in Pχ.

6: If the answer of the above step is true, then add
these k points in the set P ∗, set flag = true, and
break the for loop.

7: end for
8: if (flag = false) then
9: Divide χ into 9 subcells of size 1√

2
× 1√

2
. Choose

one point of Pχ from each of these 9 subcells and
add these 9 points to the set P ∗.

10: end if
11: return P ∗

Observe that a unit disk in the optimum solution of
a cell χ does not cover any point of some other cell
ψ unless ψ is one of the eight neighboring cells of χ.
We color the cells with minimum number of colors such
that the unit disks placed in the cells of same color are
non-overlapping irrespective of which point is chosen (as
the center of the disk) in those cells. Thus, if we color
cell number 1 (top-left cell) of the grid by A, we need
to assign three different colors, say B, C and D to its
three neighboring cells numbered 2, 7 and 8, which in
turn are neighbors to each other (see Figure 2). But,
we can again assign color A to cell 3. Thus, we have the
following result.

Lemma 3 The minimum number of colors required to
color the cells of the grid is 4.

Proof. We assign color to the cells in the grid from top
row to the bottom row, and the cells in each row are
colored from left to right. While assigning color to a
cell, at most three of its neighbors are already colored.
These are all different since the corresponding cells are
neighbor to each other. So, we may assign the remaining
fourth color to it. �

Theorem 4 A 4-factor approximation algorithm for
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the minimum discrete piercing set problem for unit disk
exists with time complexity O(n9).

Proof. Consider the cells colored by A. Since the dis-
tance between any two cells with color A is at least
3√
2
(> 2), a unit disk can covers only the points in a

single cell with color A. Therefore, the set of disks
in the optimum solution of one cell colored with A do
not cover any point in any other cell colored with A.
Thus, the optimum solution of the points of all the cells
colored with A can be computed by choosing each A
colored cell independently, and computing its optimum
solution. Let us denote this solution by OPTA. Surely
|OPTA| ≤ |OPT |, where OPT is the optimum solution
for the point set P distributed on the plane. Similarly
OPTB , OPTC and OPTD denote the optimum solution
of the cells colored as B, C and D. The approxima-
tion factor of our algorithm follows from the fact that
|OPTA|+ |OPTB |+ |OPTC |+ |OPTD| ≤ 4|OPT |, and
our reported answer is OPTA∪OPTB∪OPTC∪OPTD.
The time complexity follows from the fact that we are
using at most O(n) points while computing the opti-
mum solution of a cell, and we are computing the op-
timum solution for only non-empty cells, which may be
O(n) in the worst case. �

2.3 Improving the approximation factor to 3

We now improve the previous method by reducing de-
pendency between cells. As in the earlier sections, here
also we need to partition the region into cells as fol-
lows. We split the plane into horizontal strip of width
3√
2
. Each odd numbered strip is divided into equal sized

cells of width 6√
2
. The horizontal width of the last cell

may be less than 6√
2
, depending on the horizontal width

of the region. Each even numbered strip is divided into
cells such that the first cell is of width 3√

2
, and the

other cells are of width 6√
2
, excepting the last cell as

mentioned for odd numbered strips. Next, we assign
color to the cells of the odd numbered strips using three
colors A, B and C as shown in Figure 3. Now consider
the cells in the even numbered strips, say strip 2. Cell
8 shares sides of two cells 1 and 2, which are already
colored by A and B. So, we can color cell 8 by C. By
the same reason, cells 7 and 9 are colored by C and A.
Thus, the cells of each odd numbered strips are colored
using the sequence B,C,A,B,C,A, . . .. Such a coloring
admits that no part of the disk centered at a point in-
side a cell of a particular color i (∈ {A,B,C}) will lie
in another cell of the same color i.
The maximum number of disks (centered at points in P )
required to cover all the points is a cell of size 3√

2
× 6√

2

is 18. Arguing as in Subsection 2.2, the worst case time

Algorithm 3 MDS 4-FACTOR(P )
1: Input: Set P of points in a 2-dimensional plane.
2: Output: Set P ∗ ⊆ P such that the unit disks cen-

tered at points in P ∗ cover all the points in P .
3: Set P ∗ ← ∅.
4: Consider a partitioning of the plane into a grid

whose each cell is of size 3√
2
× 3√

2
. /* A grid cell

(α, β) is said to be less than another grid cell (γ, δ)
if and only if either α < γ or α = γ and β < δ */

5: Consider an height balanced binary tree T for stor-
ing the non-empty grid cells. Each element of T is
a tuple χ = (α, β) indicating the indices of a non-
empty cell. It is attached with two sets namely, Pχ
and Qχ where Pχ ⊆ P is the set of points inside the
cell χ and Qχ ⊆ P is the set of points such that the
disk centered at the points in Qχ covers at least one
point in Pχ. For each point pi = (xi, yi) ∈ P , we
compute the indices of the grid cell α = d 3xi√

2
e and

β = d 3yi√
2
e. If the tuple (α, β) is not in T , we store

it in T with corresponding Pχ and Qχ. Otherwise
(i.e., if (α, β) is in T ), we just modify the sets Pχ
and Qχ.

6: for (each node v of T ) do
7: Run 3√

2
X 3√

2
OPT(χ, Pχ, Qχ) /* Algorithm 2 */

8: Let P ∗1 be the output of the above algorithm. Set
P ∗ = P ∗ ∪ P ∗1

9: end for
10: return P ∗
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AB C AB C
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Figure 3: Coloring of cells for 3-factor approximation
algorithm

needed for computing the minimum number of disks
required to cover the points of P in such a cell is O(n18).
Thus, we have the following result:

Theorem 5 A 3-factor approximation algorithm for
the minimum discrete piercing set problem for unit disks
exists with time complexity O(n18).
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3 Conclusion

We proposed constant factor approximation algorithms
for a variation of the discrete piercing set problem for
unit disks, where the points chosen for piercing the disks
will be from the set of center points of the disks given
for piercing. The most simple algorithm produces 14-
factor approximation result in O(n log n) time. We then
improve the approximation factor to 4. Finally, we pro-
pose a 3-factor approximation algorithm, which is an
improvement of the existing result by a factor of 5

3 [20].
Though, the time complexity of our proposed 4- and
3-factor approximation algorithms are high, in actual
scenario, they terminate very fast.
Finally, our algorithm can also be used to solve the h-
piercing problem for unit disks as defined in [20]. Fol-
lowing the same method as in [20], it can be shown that
the result obtained using our method is no worse than
3(2h − 1)-factor of the optimum solution of h-piercing
problem. Thus, the result produced by our algorithm
for the h-piercing problem is an improvement by a factor
5
3 over the existing best known result [20].
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