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An Incremental Algorithm for High Order Maximum Voronoi Diagram
Construction

Khuong Vu ∗ Rong Zheng∗

Abstract

We propose an incremental approach to compute the
order-k maximum Voronoi diagram of disks in the plane.
In our approach, we start with an order-k Voronoi di-
agram of disk centers and iteratively expand disks and
update the changes of the diagram until all disks reach
their targeted size. When disks expand continuously,
the structure of the diagram changes discretely. The

algorithm takes O
(⌈

rmax−rmin

dmin

⌉
k2N logN

)
time com-

plexity, where N , rmax and rmin are respectively the
number of disks, the maximum and minimum radii of
disks, and dmin is the minimum distance between two
disk centers. Our algorithm is amiable to distributed
implementation.

1 Introduction

Consider a set of N disks S = {D1(o1, r1),D2(o2, r2),
. . . ,Dn(oN , rN )}, where oi and ri are respectively the
center and radius of disk Di (1 ≤ i ≤ N). We define the
distance from a point p to disk Di as dmax(p,Di) = d(p,
oi) + ri, where d(·, ·) is the Euclidean distance between
two points. The locus of points closer to Di than to Dj ,
h(Di,Dj), is one of the half-planes determined by the
bisector b(Di,Dj) = {p|dmax(p,Di) = dmax(p,Dj)}, or
b(Di,Dj) = {p|d(p, oi) − d(p, oj) = rj − ri}. In gen-
eral, b(Di,Dj) is a hyperbolic curve. Let V(Di) de-
note the locus of points closer to Di than to any other
disk in S. Thus, V(Di) =

⋂
i 6=j h(Di,Dj). It has been

shown in [4] that if Di does not contain any other disks,
then V(Di) 6= ∅. In addition, V(Di)’s boundary consists
of edges, which are hyperbolic segments, and vertices,
which are intersections of adjacent edges. V(Di) is re-
ferred to as the Voronoi face associated with disk Di,
and the set {V(Di), 1 ≤ i ≤ n} is referred to as the
maximum Voronoi diagram, or max VD for short, of S.
In [4], the authors proposed an algorithm to construct
the max VD of n disks in O(T (N) + N logN), where
T (N) is the time of the nearest neighbor query under
dmax metric. An example of max VD is shown in Fig-
ure 1. As seen in the figure, V(D8) = ∅ since it contains
D6.
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Figure 1: The max Voronoi diagram of 8 disks.

Similar to the high order Voronoi diagram of points
first studied by Lee [8], we generalize the concept of
max VD such that a Voronoi face is associated with a
set of disks, H ⊂ S for |H| > 1. Denote Vk(H,S),
where |H| = k,H ⊂ S, the locus of points closer to all
disks of H than to any disk in S \ H. We define the
order-k max VD of S, V k(S), as a collection of Voronoi
faces corresponding to all subsets H of S (|H| = k),
i.e., V k(S) =

⋃
H⊂S Vk(H,S), |H| = k. We adopt the

definition in [3] to formally define the order-k max VD
as follows:

Definition 1 For i, j ∈ S, let D(Di,Dj) = {p|dmax(p,
Di) < dmax(p,Dj)}. Let H ⊂ S, |H| = k. We define

Vk(H,S) =
⋂

h∈H,i6∈H

D(Dh,Di)

the order-k maximum-Voronoi face of a set of disks H
with respect to S. The order-k maximum-Voronoi dia-
gram of S is defined as

V k(S) =
⋃

H,H′⊂S;H 6=H′;|H|=|H′|=k

Vk(H,S)
⋂
Vk(H ′, S)

In [10], Lee’s incremental algorithm is applied to con-
struct order-k max VD under the assumption that no
disk contains any other disk. Accordingly, each Voronoi
face of order-(k − 1), Vk−1(H,S), is tessellated by the
order-1 Voronoi diagram of some disks to create the next
order Voronoi faces. It has been shown that only disks
associated with edges of Vk(H,S) need to be consid-
ered for tessellation. In general placement of disks, the
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(a) order-1 max VD. The
curve is the bisector of disks
D1 and D2. V(D3) = ∅.

(b) order-2 max VD. The
curve is the bisector of disks
D1 and D3. V(D1,D2) 6= ∅,
V(D2,D3) 6= ∅.

Figure 2: Incremental construction does not apply as
disks are contained inside other ones.

assumption does not always hold. As illustrated in Fig-
ure 2, although D3 is associated with no edge in the
order-1 max VD of S = {D1,D2,D3}, we have V2({D2,
D3}, S) 6= ∅.

In the paper, we propose an incremental algorithm
to construct order-k max VD of disks. The intuition is
as follows. Consider a Voronoi region, Vk(H,S), in an
order-k max VD whose edge set is E. The generation
of a new edge in E or the disappearance of an exist-
ing edge in E is referred to as an event of E. We ob-
serve that changing a disk’s radius continuously makes
some Voronoi vertices move along an identifiable trajec-
tory while the others do not change. More importantly,
disks’ expansion does not necessarily induce an event of
E. A disk may expand continuously but events happen
discretely. This is illustrated in Figure 3. There are two
kinds of vertices, i.e., new and old , denoted by circles
and solid squares, respectively. As D3 expands, vertices
of both kinds move along particular edges (arrows in
the figures). We observe that solid squares move away
their corresponding opposite vertex, while circles move
toward their corresponding opposite vertex. Vertices
may meet while moving. In this case, they may “de-
stroy” an edge and create another one simultaneously.
Additionally, a face may degenerate due to the meeting
of moving vertices. Another face may be born simulta-
neously. In the following sections, we provide details of
events that happen when a disk expands.

We discuss the changes of the diagram as disks ex-
pand in Section 3. Then, we propose an incremental
algorithm to construct the order-k maximum Voronoi
diagrams in Section 4. We conclude the paper in Sec-
tion 5. We next introduce the concepts of order-k max
VD in Section 2.

2 Preliminary

In the following discussion, we assume that no more
than 2 disks’ centers are co-linear, and no point in the
plane is equal-distant to more than 3 disks under the
dmax metric. We summarize the notations used through-
out the paper as follows:

Dk(ok, rk): The disk centered at ok with radius rk. We
use the notion Dk for simplicity.

S: The set of N disks {D1, D2, . . . , DN}.

Sεi : The modified S, in which the radius of Di expands
by a positive amount ε. Sεi = (S \ {Di})

⋃
{Di′(oi,

ri + ε)}.

H: A subset of S.

Hε
i : The updatedH. Hε

i = (H\{Di})
⋃
{Di′(oi, ri+ε)}.

dmax(p,Di): The maximum distance from p to Di.
dmax(p,Di) = d(p, oi) + ri, where d(·, ·) is the Eu-
clidean distance between two 2D points.

Vk(S): The max Voronoi face corresponding to disk Dk
in the max VD of S. We simply refer to this as Vk,
when no confusion occurs.

V (S): The max VD of the disk set S.

Vk(H,S): An order-k max Voronoi face associated with
H, where |H| = k.

V k(S): The order-k max VD of S, or “diagram” for
short. When k = 1, V k(S) ≡ V (S).

vi,j,h: The max VD vertex corresponding to disks Di,
Dj , and Dh.

ei,j: The edge of the max VD corresponding to disks Di
and Dj . ei,j is a hyperbola segment or an infinite
hyperbola.

bi,j: The locus of points p such that dmax(p,Di) =
dmax(p,Dj). bi,j is a hyperbola with foci being oi
and oj , or a straight line when ri = rj . We refer to
bi,j as the bisector of oi and oj .

Two circles D1(o1, r1) and D2(o2, r2) are internally tan-
gent if d(o1, o2) = |r1 − r2|. In the rest of the paper,
by stating that a circle D1 is internally tangent to D2,
we mean D2 lies interior to D1 unless stated otherwise.
In addition, we say a circle D1 contains D2 if D2 lies
interior to D1 but D1 is NOT internally tangent to D2.

We review two kinds of vertices described in [8]. As-
sume p is equal-distant to 3 disks under the dmax metric,
i.e., Di,Dj , and Dq. Let C be the circle centered at p
and internally tangent to the three disks. Assume that
C contains k−1 other disks. By Definition 1, p belongs
to 3 Voronoi faces of order k, namely, Vk(H

⋃
{Di}, S),

Vk(H
⋃
{Dj}, S), and Vk(H

⋃
{Dq}, S). In this case, p

is referred to as a vertex of V k(S). Furthermore, p is
also at the intersection of 3 Voronoi faces of order k+1,
namely, Vk+1(H

⋃
{Di,Dj}, S), Vk+1(H

⋃
{Dj ,Dq}, S),

and Vk+1(H
⋃
{Dq,Di}, S). We say that, p is a new ver-

tex of V k(S) and is an old vertex of V k+1(S). A new
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vertex of order-k Voronoi diagram becomes an old ver-
tex in the order-(k+ 1) Voronoi diagram; an old vertex
of order-k Voronoi diagram does not exist in the next
order Voronoi diagram.

To facilitate our discussion on disk expansion later,
we introduce the notion of pseudo disk. A pseudo disk,
denoted by D∞, is a disk centered at the infinity with
unit radius. Consider the infinite endpoint p of an infi-
nite edge ei,j in an order-1 max VD. We have dmax(p,
Dj) = dmax(p,Di) = ∞. Therefore, we can associate
p with a pseudo disk, that is, p is a vertex correspond-
ing to 3 disks, namely, Dj , Di, and D∞. This way,
we enclose the open end of each order-1 Voronoi face
V({Di}, S) with 2 edges, both associated with a pseudo
disk. Therefore, all faces in any order-1 max VD are
considered “closed”. By similar arguments, the open
end of the infinite edge ei,j is bounded by a new vertex
corresponding to disks Di, Dj , and D∞.

We study the evolution of the order-k max VD as a
disk expands. More specifically, we investigate 2 cases,
namely, i) the expanding disk shares edges with at least
one disk, and ii) the expanding disk does not share edges
with any disk. We refer the disks of the first case as type-
I , and the latter as type-II. Expanding a type-II disk
eventually makes it a type-I, while expanding a type-I
disk possibly makes some type-I disks type-II. In the
following sections, we establish fundamental properties
as a disk in an order-k max VD expands. We study
type-I disks in section 3.1 and discuss in section 3.2 the
expansion of a type-II disk.

Before proceeding, we introduce the notation of max-
imum circumference. Consider an edge ei,j of 2 faces
Vk(H1, S), Vk(H2, S). There exists a circle that is in-
ternally tangent to Di and Dj , and contains H1

⋃
H2.

We refer to the circle as the maximum circumference
of H1 and H2 associated with ei,j , or simply maximum
circumference. Similarly, a maximum circumference as-
sociated with a vertex is defined as the circle centered
at the vertex and internally tangent to the disks con-
structing the vertex. If ei,j is an infinite edge, there
exists a maximum circumference centered at infinity.

3 Geometrical analysis of order-k max VD

In this section, we study the changes of the order-k max
VD as disks of type-I and type-II expand. The proofs
are omitted due to space limit.

3.1 Expansion of a type-I disk

Expanding a disk Di, where Di ∈ H, makes some faces
Vk(H,S) shrink.

Lemma 1 Let Vk(H,S) and Vk(Hε
i , S

ε
i ) be the max

Voronoi face of H and Hε
i in S and Sεi , respectively.

Then, Vk(Hε
i , S

ε
i ) ⊂ Vk(H,S).

Figure 3: The change of order-2 max VD of four disks
as disk D3 expands. Circles are old vertices, solid dots
are new vertices. Dash curves are the diagram corre-
sponding to the expanded D3. Vertices move as shown
in arrows.

Roughly speaking, expanding a disk leads to changes
in vertices, edges and faces of V k(S). Vertices move
along edges and meet other ones. Formally,

Lemma 2 Consider a vertex vi,j,q of Vk(H,S). As Di
expands, vi,j,q moves along bj,q. If vi,j,q is new, it moves
away from the other end of ej,q elongating ej,q. Other-
wise, it moves towards the other end of ej,q to shorten
ej,q.

This is illustrated in Figure 3. As D3 expands, the
next vertex v1 moves to elongate edge e1, and old ver-
tices v2 and v3 move to shorten edges e2 and e3, re-
spectively. As a high order max VD evolves, different
sequences of events occur as different types of vertices
and edges are involved. The meeting of 2 new vertices
or 2 old vertices results in an edge-death/birth, while
the meeting of an old vertex and a new one additionally
leads to face-death/birth.

Lemma 3 Let ei,j be an edge of Vk(H,S) with 2 new
vertices, e.g., vi,j−1,j and vi,j,j+1 in counter-clockwise
order in Vk(H,S). ei,j−1 and ei,j+1 are the edges of
Vk(H,S) incident to vi,j−1,j and vi,j,j+1, respectively.
Let p be the intersection of bj,j−1 and bj,j+1. Assume
that the next event as Di expands is the meeting of
vi,j−1,j and vi,j,j+1 at p. If Dj−1 6= Dj+1, then with
further expansion of Di, ei,j = ∅ and ej−1,j+1 6= ∅. In
addition, both vertices of ej−1,j+1 are new.

Lemma 4 Consider an edge ei,j of 2 faces Vk(H1, S)
and Vk(H2, S) with 2 old vertices vi,j,n and vi,j,m, where
{Di,Dn,Dm} ⊂ H1 and {Dj ,Dn,Dm} ⊂ H2, respec-
tively. Let Vk(H3, S) and Vk(H4, S) be the other faces,
incident to vi,j,n and vi,j,m, respectively. If Dm 6= Dn,
and Dn expands such that the next event is the meeting
of vi,j,n and vi,j,m, further expansion of Dn results in i)
ei,j = ∅, and ii) “new” edge en,m 6= ∅ of Vk(H3, S) and
Vk(H4, S).

Lemmas 3 and 4 establish the changes in the diagram
as vertices of the same kind meet. In general, the meet-
ing of the 2 ends of an edge makes the edge disappear.
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(a) (b)

Figure 4: The evolution of edges ei,j and en,m as new
vertices move due to the expansion of Dn.

(a) (b)

Figure 5: The evolution of edges ei,j and en,m as old
vertices move due to the expansion of Dn.

We refer to this as an edge-death. If the two vertices dif-
fer by one associated disk, another edge is born simul-
taneously. We refer to this as an edge-birth. Vertices of
the newly born edge are new or old depending on the
types of the meeting vertices. As two vertices are con-
structed by the same set of disks, the edge-death makes
some face disappear. We refer to this as a face-death
event. We skip the discussion on this kind of vertex
meeting due to the space limit.

Figures 4 and 5 illustrate the results of Lemmas 3 and
4, respectively. Figures 4 shows the evolution of edge
en,m connecting 2 new vertices. Initially, en,m 6= ∅, and
ei,j = ∅ (Figure 4a). As Dn expands, 2 vertices of en,m
moves along the corresponding edges toward Vk(H1, S)
(arrow). If they meet, en,m disappears and ei,j is born
(Figure 4b). Both vertices are new. Figure 5 shows the
evolution of edge ei,j connecting 2 old vertices. Initially,
ei,j 6= ∅ and en,m = ∅ (Figure 5a). As Dn expands, a
vertex of ei,j moves toward the opposite end (arrow),
which makes ei,j shrink. Eventually, ei,j degenerates as
2 vertices of ei,j meet, and en,m is born (Figure 5b).
Both vertices are old. Next, we present the change of
the diagram as vertices of different kinds meet.

Lemma 5 Assume that the new vertex vi,j,n meets the
old one vi,j,m as Dn expands to Dn′(on, rn′), which re-
sults in the degeneration of edge ei,j. The following
holds: i) Either face incident to ei,j, e.g., Vk(H1, S),
where H1 = H

⋃
{Dn,Di} disappears; ii) Prior to the

degeneration, Vk(H1, S) shares edges ej,n, em,n, em,i,

(a) The structure of the diagram prior to the
disappearance of face Vk(H

⋃
{Di,Dn}).

(b) The structure of the diagram posterior to
the disappearance of face Vk(H

⋃
{Di,Dn}).

Figure 6: The evolution of faces Vk(H
⋃
{Di,

Dj}), Vk(H
⋃
{Di,Dm}, S), Vk(H

⋃
{Dn,Dm}, S),

Vk(H
⋃
{Dj ,Dn}, S), Vk(H

⋃
{Di,Dn}, S), and

Vk(H
⋃
{Dj ,Dm}, S) (|H| = k − 1). Squares de-

notes new vertices. Circles denotes old vertices.

and ej,i with only four neighbor faces Vk(H2, S), Vk(H3,
S),Vk(H4, S), and Vk(H5, S), respectively, where H2 =
H
⋃
{Di,Dj}, H3 = H

⋃
{Di,Dm}, H4 = H

⋃
{Dn,

Dm}, H5 = H
⋃
{Dj ,Dn}; and iii) Posterior to the

degeneration of Vk(H1, S), Vk(H
⋃
{Dj ,Dm}, S) 6= ∅,

and ej,n, em,n, em,i, and ej,i of faces Vk(H2, S), Vk(H3,
S), Vk(H4, S), Vk(H5, S) are replaced by ei,m, ei,j, en,j,
en,m, respectively. Thus, Vk(H

⋃
{Dj ,Dm}, S) consists

of 4 edges, namely, ei,m, ei,j, en,j, and en,m, and 4 ver-
tices, including 2 new vertices, namely, vi,n,m and vi,j,n,
and 2 old vertices, namely, vi,j,m, and vj,n,m.

Figure 6 illustrates the changes in the diagram as old
vertices meet new vertices. Initially, Vk(H

⋃
{Di,Dn},

S) 6= ∅ and Vk(H
⋃
{Dj ,Dm}, S) = ∅. As Dn expands,

old vertices vi,j,n and vi,n,m move along edges ei,j and
ei,m (arrows), respectively, and meet new vertex vi,j,m
making face Vk(H

⋃
{Di,Dn}, S) disappear. Prior to

its death, face Vk(H
⋃
{Di,Dn}, S) shares 4 edges,

i.e., ei,j , en,j , en,m, and ei,m with faces Vk(H
⋃
{Dj ,

Dn}, S),Vk(H
⋃
{Di,Dj}, S),Vk(H

⋃
{Di,Dm}, S),

and Vk(H
⋃
{Dn,Dm}, S), respectively (Figure 6a).

Posterior to the degeneration of face Vk(H
⋃
{Di,

Dn}, S), face Vk(H
⋃
{Dj ,Dm}, S) is born, which

respectively shares 4 edges, i.e., em,n, em,i, ej,i, and
ej,n with faces Vk(H

⋃
{Dj ,Dn}, S),Vk(H

⋃
{Di,Dj},

S),Vk(H
⋃
{Di,Dm}, S), and Vk(H

⋃
{Dn,Dm}, S)
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Figure 7: Illustration of a type-II disk’s expansion.
Dashed lines are the order-4 diagram of 5 points. Solid
lines are maximum circumferences centered at infinite
vertices. Light solid circles are the maximum circum-
ferences centered at 2 finite vertices (v1 and v2).

(Figure 6b).

3.2 Expansion of a type-II disk

A disk Di is a type-II disk if it does not shares any edge
with other disks, i.e., ei,j = ∅, ∀Dj ∈ S, j 6= i. We can
show that a disk Di is type-II in Vk(S) when Di contains
k other disks, or Di corresponds to all faces in Vk(S),
i.e., Di ∈ H for all Vk(H,S)’s in Vk(S). In this section,
we only discuss the latter case. It will be shown later
that limiting our consideration to this case is sufficient
to construct the order-k Voronoi diagrams. The basic
idea is, we expand type-II disks to make them type-I,
and then apply the techniques developed for type-I disks
as discussed earlier. We can show that when a type-II
disk expands, it only touches a maximum circumference
centered at an infinite vertex. We illustrate the claim
in Figure 7, which shows the order-4 Voronoi diagram
of 5 disks of zero radius, S = {D1,D2, . . . ,D5}. The
Voronoi regions are V4({D1,D2,D4,D3}, S), V4({D1,
D2,D5,D3}, S), V4({D1,D5,D4,D3}, S), and V4({D2,
D4,D5,D3}, S), which make D3 a type-II disk. The
diagram (dashed) consists of 2 finite vertices, v1 and v2,
whose corresponding maximum circumferences are C6,
and C7 shown by light solid circles. The maximum cir-
cumferences centered at the infinite end of edges ei are
shown by straight lines Ci, i ∈ {1, 2, 3, 4}. As shown in
the figure, as D3 expands (dashed circle), it first touches
C5, the maximum circumference centered at the infinite
end of edge e5 at a point in segment D2D5. In fact, we
can show that:

Lemma 6 It takes O(k2N) to process an order-k max
VD of N disks so that it contains only type-I disks.

We are now in the position to sketch an algorithm
for constructing order-k maximum Voronoi diagrams of
disks.

4 The incremental algorithm for order-k max VD
construction

In constructing the order-k max VD of disks S, we start
with an order-k Voronoi diagram (VD) of disk centers
and iteratively expand each disk in S by a fixed amount

dmin, where dmin
∆
= mini,j∈S d(oi, oj)− ε. We stop when

all disks reach their targeted size. The resulted diagram
is the order-k max VD of S. Let rmax = maxi∈S ri and
rmin = mini∈S ri. Clearly, the total number of rounds a
disk needs to expand is bounded by d rmax−rmin

dmin
e. This

implies that the algorithm terminates. Since disks ex-
pand by dmin, they are not contained in other disks un-
til they reach their targeted sizes. Furthermore, when a
disk contains k other disks in its expansion, it becomes
type-II since the k disks have reached their targeted
sizes. Thus, its further expansion does not change the
diagram. Therefore, the algorithm proceeds in such a
way that all expanding disks are always type-I. As dis-
cussed in the previous sections, expanding disks do not
make any new type-II disk. Thus, it is always possi-
ble to evaluate the expansion such that the next vertex
meeting happens. The procedure of order-k max VD
construction is summarized in Algorithm 1.

We first derive the number of edges and vertices in
the order-k max VD by extending the results in [8].

Lemma 7 The number of vertices and edges in an
order-k max VD of N disks is O(kN).

Algorithm 1 takes the set S of N disks as inputs. It
starts by constructing the order-k VD of disk centers
(line 2), which in fact is the order-k max VD of disks
whose radii are all equal to the minimum radius of N
disks, denoted as S′. The process takes O(k2N logN)
in running time ([8]). Since the order-k VD may con-
tain type-II disks, we first make them type-I. This takes
O(k2N). Then, we iteratively scan all disks in S and
expand those whose radii are smaller than their respec-
tive sizes an amount dmin (lines 6 - 19). dmin can be
computed in O(N) using the order-1 VD of S′, which is
a byproduct in the incremental construction of V k(S′).
As each disk increases by dmin, a disk Di cannot contain
disk Dj unless Dj has reached it targeted size. There-
fore, it validates the earlier claim that we only need to
consider type-II disks that do not contain other disks.

Theorem 1 The order-k max VD of N disks can be

constructed in O
(⌈

rmax−rmin

dmin

⌉
k2N logN

)
, where rmax

and rmin are respectively the maximum and minimum
radii of N disks, and dmin is the minimum distance be-
tween 2 disk centers.

Proof. (Sketch) We analyze the expansion phase
(lines 6-end). Let Dn be the disk that expands first,
and en,m be the edge that first disappears due to the
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expansion of Dn resulting in the birth of edge ei,j (Fig-
ure 4). When edge ej,i is born, the number of edges
affected by the expansion of disks Di and Dj increases
by 2, while that of Dm decreases by 1. In general, when
an edge of a face disappears, the total number of edges
needed to be processed as other disks expand increases
by 1. This observation also applies to two old vertices,
as well as the case when an old vertex and a new ver-
tex meet. In the order-k max VD, a face corresponds
to k disks, thus each edge in a face may be processed
k times. Since the number of edges in an order-k max
VD is O(kN), the total number of edges processed as N
disks, each expands once, is O(k2N). Line 13 in Algo-
rithm 1 requires a sorted list. Since the total number of
edges processed is O(k2N), line 13 takes O(k2N logN).
Since a disk expands dmin in each round, it needs at most
d rmax−rmin

dmin
e expansions. Therefore, the time complexity

of Algorithm 1 is O
(⌈

rmax−rmin

dmin

⌉
k2N logN

)
. �

Algorithm 1: Order-k Maximum Voronoi diagram
of disks
input : A set of N disks

S = {D1(o1, r1),D1(o2, r2), . . . ,DN (oN , rN )}
output: The order-k max VD of S, V k(S)

rmin ← mini ri;1

S′ ← {D1(o1, r
′
1 = rmin), . . . ,DN (oN , r

′
N = rmin)};2

Construct V k(S′);3

process V k(S′) to transform type-II disks to type-I;4

dmin ← mini,j∈S d(oi, oj)− ε ;5

repeat6

foreach Di such that r′i < ri do7

if (r′i + dmin) > ri then8

max inc← r′i − ri;9

else10

max inc← dmin;11

while r′i < max inc do12

find the smallest expansion e such that an13

event happens ;
if r′i + e < max inc then14

r′i ← r′i + e;15

update V k(S′) due to the event’s16

consequences;
else17

r′i ← max inc;18

re-calculate edges/vertices19

corresponding to Di;

until until all disks reach their targeted size ;20

5 Conclusion

We have proposed an incremental algorithm to con-
struct order-k maximum Voronoi diagram of disks in
the plane. In our approach, disks iteratively expand

from zero radius until they reach the targeted size, and
the diagram is updated at certain sizes of disks. The al-

gorithm runs in O
(⌈

rmax−rmin

dmin

⌉
k2N logN

)
time, where

rmax and rmin are respectively the maximum and mini-
mum radii of N disks, and dmin is the minimum distance
between 2 disk centers. Our contribution is two-fold.
First, our algorithm provides a mechanism to quickly
update the diagram of an order-k max VD as disk radii
change (but disk centers are fixed). Second, our ap-
proach is amiable to distributed implementation. When
a disk expands, it needs only information of the neigh-
bors to update the diagram structure.
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