
CCCG 2011, Toronto ON, August 10–12, 2011

Finding the Maximum Area Parallelogram in a Convex Polygon

Kai Jin⇤ Kevin Matulef⇤

Abstract

We consider the problem of finding the maximum area
parallelogram (MAP) inside a given convex polygon.
Our main result is an algorithm for computing the MAP
in an n-sided polygon in O(n2) time. Achieving this
running time requires proving several new structural
properties of the MAP, and combining them with a ro-
tating technique of Toussaint [10].
We also discuss applications of our result to the

problem of computing the maximum area centrally-
symmetric convex body (MAC) inside a given convex
polygon, and to a “fault tolerant area maximization”
problem which we define.

1 Introduction

A common problem in computational geometry is that
of finding the largest figure of one type contained in a
given figure of another type. Over the last 30 years re-
searchers have looked at several instances of this prob-
lem, such as finding the largest convex polygon con-
tained in an arbitrary polygon [2], the largest axis-
parallel rectangle in an arbitrary polygon [3] , the largest
triangle inscribed in a convex polygon [4], the largest k-
gon in a convex polygon [1], or the largest square in a
convex polygon [7].
In this work, we consider the problem of finding the

maximum area parallelogram (MAP) inside a convex
polygon. Our main result is the following:

Theorem 1 There is an algorithm for computing the

MAP in a convex polygon with n sides in O(n2) time.

As we shall see, achieving an O(n2) running time is
not straightforward; it requires proving several struc-
tural properties of the MAP. We discuss the challenges
involved, and our techniques for overcoming them, in
Section 1.2.

1.1 Applications

The MAC. One reason why the parallelogram case
is of special interest is because parallelograms are the

⇤
IIIS, Tsinghua University, cscjjk@msn.com and

matulef@gmail.com. Supported in part by the National Basic Re-

search Program of China Grant 2007CB807900, 2007CB807901,

and the National Natural Science Foundation of China Grant

61033001, 61061130540, 61073174.

simplest polygons that are “centrally-symmetric” (i.e.
for which there exists a “center” such that every point
on the figure, when reflected about the center, pro-
duces another point on the figure). It is natural to
ask whether we can, in general, compute the Maximum
Area Centrally-symmetric convex body (MAC) inside
a given convex polygon or convex curve. Although it
seems di�cult to compute the area of the MAC exactly,
it is known that the MAP serves as an approximation:1

Theorem 2 [5, 8] For a convex curve Q, the area of

the MAP inside it is always at least

2
⇡

⇡ 0.6366 times

the area of Q, Moreover, this bound is tight; the worst

case is realized when the given convex curve is an ellipse.

Theorem 2 follows from two results.2 The first result
of Dowker [5] says that for any centrally-symmetric con-
vex body K in the plane, and any even n � 4, among
the inscribed (or contained) convex n-gons of maximal
area in K, there is one which is centrally-symmetric.
The second result of Sas [8] says that for convex bodies
in Rd, the hardest to approximate with inscribed n-gons
are exactly the ellipsoids.

By combining Theorem 2 with our Theorem 1, we get
the following corollary.

Corollary 3 There is a

2
⇡

-approximation algorithm for

computing the area of the MAC in O(n2) time.

Fault Tolerant Area Maximization. Consider the
following general problem: you are allowed to place k
points inside a polygon P , then an adversary removes
j of them (where j < k). Your goal is to maximize
the area of the convex hull of the remaining points. We
call this the Fault Tolerant Area (FTA) Maximization

Problem.
Let FTA(k, j) be the maximum area you can achieve

in the worst case. It is easy to see that FTA(k, 0) is
equivalent to finding the maximum area k-gon inside P .
Boyce et. al. give a clever algorithm for solving this in
O(knlgn + nlg2n) time [1]. However, when j > 0, the
problem seems much less trivial. Perhaps the simplest

1
We may give the simplest credit to squares in some sense,

but with only one constrain of been centrally-symmetric, paral-

lelograms are simpler (more flexible) than squares in the less-

constrains (flexible) sense. As a result, parallelograms are more

suitable for approximating the MAC than squares.

2
An earlier version of this paper contained an alternative proof

of Theorem 2, see http://itcs.tsinghua.edu.cn/zh/kaijin/

23rd Canadian Conference on Computational Geometry, 2011

non-trivial case is FTA(4, 1). In this case, we show
that computing FTA(4, 1) reduces to the problem of
computing both the maximum area triangle (which can
be done using Boyce et. al.’s algorithm) and the MAP.
Thus, we get the following corollary to our main theo-
rem (due to space limitations, we present the proof of
this corollary in the Appendix).

Corollary 4 (Reduction) Computing FTA(4, 1) in a

convex polygon P can be done in O(n2) time.

1.2 Techniques

We start by proving the relatively simple fact that the
MAP inside a convex polygon P must have all of its cor-
ners on the perimeter of P . This suggests the possibility
of an algorithm that works by enumerating all 4-tuples
of edges of P , and for each 4-tuple finding the largest
parallelogram with one corner on each edge. Such an
algorithm would, at best, run in O(n4) time.

To reduce the search space, we further prove that the
MAP must be anchored on P . In other words, it must
have at least one corner on a vertex of P . We prove this
via a lemma we call the “hyperbola lemma” which may
be of independent interest (see Section 2.2). We then
divide the computation of the MAP into two cases: one
where the MAP has two opposite, non-anchored corners,
and one where it has two adjacent, anchored corners.

For the first case, we prove that for every pair of edges
of P , finding the MAP with opposite non-anchored cor-
ners on those edges involves checking only O(n) possi-
bilities for the placement of the other corners. As there
are O(n2) pairs of edges, in total this yields an O(n3)
algorithm. In order to speed it up further, we employ a
rotating technique of Toussaint [Tou83]. The main idea
is to show that if the pairs of edges are processed in the
right order, the amortized cost of computing the best
placement for the other corners is only O(1). Proving
this requires proving additional structural properties of
the MAP (see Section 3.1).

For the second case, when the MAP has two adjacent
corners anchored on P , the algorithm is slightly more
complicated, but uses similar ideas and still has running
time O(n2) (see Section 3.2).

1.3 Related Work

In [2], Chang and Yap gave an algorithm for the “potato
peeling” problem, or the problem of finding the largest
convex polygon Q inside a given simple polygon P with
n sides. They showed that this problem is computable
in polynomial time, by giving algorithms computing the
maximum area Q in O(n7), and the maximum perime-
ter Q in O(n6). Their investigation led them to define
the general notion of “inclusion” problems for arbitrary
classes of polygons P and Q. The goal of the inclusion

problem on P and Q is to find the largest polygon from
Q inside a given polygon from P (here “largest” can
be with respect to area, perimeter, or other measures).
Chang and Yap surveyed several results on the inclu-
sion problem for specific P and Q, although to date no
unified solution exists. For di↵erent P and Q, it seems
di↵erent techniques must be employed. The problem we
solve in this work is the specific case where P is the set
of convex polygons, and Q is the set of parallelograms.

For the case where P is the set of convex polygons,
the inclusion problem has been studied for several dif-
ferent Q. For example, given a convex polygon P with n
vertices, Shamos [9] gave an algorithm for finding the di-
ameter of P in linear time (this corresponds to Q being
the set of “one-edge” polygons). Dobkin and Snyder [4]
gave a linear time algorithm for finding the maximum
area triangle; Boyce, Dobkin, Drysdale and Guibas [1]
gave an algorithm for finding maximum area/perimeter
k-gons in time O(knlgn + nlg2n). De Pano Ke and
O’Rourke [7] gave an algorithm for finding the largest
inscribed square in time O(n2); Fekete [6] gave an al-
gorithm for finding all anchored squaresin O(n log2 n)
time; For the case where P is the set of all simple poly-
gons, Daniels, Milenkovic and Roth [3] gave an algo-
rithm for finding the maximum area axis-parallel rect-
angle in time O(n log2 n).

2 Preliminaries

2.1 Basic notations and lemmas

We will use symbols A,B,A0, B0 to denote the four cor-
ners of a parallelogram Q = ABA0B0 (the pairs A,A0

and B,B0 denote opposite corners). We will use the
symbol E to denote the center of Q.

Definition 5 (Inscribed) We say a parallelogram Q
is inscribed on a polygon P if and only if all four cor-

ners of Q are on the boundary of P .

Definition 6 (Anchored) We say a parallelogram Q
is anchored on a polygon P if it is inscribed on P and

at least one of its corners lies on a vertex of P .

Definition 7 (Narrow side & Broad side)
Suppose b, b0 are two nonparallel edges of P . They

divide the other edges of P into two sets, the edges in

the Narrow side (where the extended lines of b and

b0 intersect) and the edges in the Broad side (where b
and b0 are further apart), illustrated in Figure 1.

Lemma 8 The parallelogram inside P with the maxi-

mum area must be inscribed on P .

Proof. We prove this by contradiction. Suppose Q =
ABA0B0 is a parallelogram which has maximal area in

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 1: Broad side and Narrow side

P but is not inscribed in P (See Figure 2). Without
loss of generality, assume A is a vertex which is not
on the boundary of P . First, we slide segment AB
along direction ~BA for a su�ciently small distance to
create A1B1. Next we slide it along direction ~B0A1

for a su�ciently small distance to create A2B2 where
A2 and B2 are still inside P . It’s easy to see that
Area(ABA0B0) < Area(A2B2A

0B0). ⇤

Figure 2: Illustration of Theorem 8

Lemma 8 says if a parallelogram Q = ABA0B0 is the
MAP of a polygon P , then all its corner must lie on the
boundary of P . For points A, B, A0, B0 that do not lie
on vertices of P , we will use the lowercase letters a, b,
a0, b0 respectively to denote the edges of P they lie on.

Lemma 9 (Two Lines Lemma) Given two nonpar-

allel lines b, b0 and one point E not on them, there is

exactly one segment connecting b and b0 with midpoint

E. Moreover, the endpoints of this segment, denoted as

B and B0
, can be computed in constant time.

This lemma is simple; we omit its proof. Next we
introduce the segment version of Lemma 9, it will be
used many times in our algorithm.
Suppose there are two segments b = B1B2 and b0 =

B3B4 which, when extended, intersect at point O. For
1 i 4, let M

i

be the midpoint of OB
i

(see Figure 3).
We draw a parallelogram P (b, b0) such that one pair of
sides is parallel to b and crossing M3 and M4, and the
other pair of sides is parallel to b0 and crossing M1 and
M2.

Lemma 10 (Two Segments Lemma) There is a

segment connecting b and b0 with midpoint E, if and

only if E is inside of P (b, b0).

The proof of Lemma 10 is also simple; due to space
constraints we omit it.

Figure 3: Two lines lemma and two segments lemma

Note that for a parallelogram Q with center E and
opposite corners B and B0 located on b and b0 respec-
tively, we know E 2 P (b, b0) because E is the midpoint
of the diagonal BB0.

2.2 The Hyperbola Lemma

Definition 11 For two nonparallel lines b1, b2 inter-

secting at O, and a point A strictly in-between them,

there is a unique hyperbola asymptotic to b1 and b2 and

intersecting A, denoted as hb1,b2

A

(or h
A

for short). Let

Cb1,b2

A

(or C
A

for short) denote the distance from O to

the nearest point on h
A

.

Lemma 12 (Hyperbola Lemma) Suppose b, b0 are

two nonparallel lines which intersect at origin O. Let h1

and h2 be two hyperbolas which are both asymptotic to

b and b0. Then all parallelograms Q = ABA0B0
, where

A,B,A0, B0
lie on h1, b, h2, b

0
respectively, have the same

area.

Figure 4: Hyperbola Lemma (orthogonal case)

Proof. We will prove the lemma in the case when b and
b0 are orthogonal. The general case follows from a linear
transformation.

23rd Canadian Conference on Computational Geometry, 2011

Build a Cartesian coordinate system with origin O
and let b0, b be the x-axis and y-axis (see Figure 4).
Suppose the coordinates of A and A0 are (x1, y1) and
(x2, y2) respectively. The center E is the midpoint
of AA0, and thus has coordinates (x1+x2

2 , y1+y2

2). By
Lemma 9, the coordinates of B and B0 are uniquely
determined, and are easily verified to have coordinates
(0, y1 + y2) and (x1 + x2, 0). Thus, we can compute
area(Q) = x2y2�x1y1. Since h1 and h2 are hyperbolas
asymptotic to b and b0, this means x1y1 = C2

A

/2 and
x2y2 = C2

A

0/2. Hence, area(Q) = C2
A

0/2�C2
A

/2, which
is invariant. ⇤

We will apply the hyperbola lemma with b and b0

equal to extensions of edges of the original polygon P .
Note that to find the maximum area parallelogram in
P with one vertex on b and another on b0, we should
choose A and A0 so as to maximize C

A

0 and minimize
C

A

. However, this is trickier than it seems, since if we
are allowed to choose A and A0 arbitrarily, the resulting
B and B0 may not actually lie on the original edges of
the polygon (which are just segments, not lines). We
discuss this complication further in Section 3.1.

Definition 13 Let b, b0 be two nonparallel edges, and

let c be an edge in the broad side. Then we use X
c

to

denote the intersection point of b and the extended line

of c, Y
c

to denote the intersection point of b0 and the

extended line of c, and Z
c

to denote the midpoint of

X
c

Y
c

.

Lemma 14 Suppose D is a point on segment X
c

Y
c

.

Then C
D

increases while D goes from X
c

to Z
c

, and

while D goes from Y
c

to Z
c

.

Proof. We only need to prove it in the case when b and
b0 are orthogonal, for the same reason used in Lemma 12.
Without loss of generality, assume b, b0 are on the x, y-
axis respectively, X

c

= (x0, 0), Yc

= (0, y0). Assume
D = (x, y0 � x(y0/x0)). It’s not hard to show that
C

D

=
p
2 ⇤ x ⇤ [y0 � x(y0/x0)]. Note x⇤ [y0�x(y0/x0)]

is a quadratic equation maximized when x = x0
2 . ⇤

2.3 The Anchor Theorem

Theorem 15 (Anchor Theorem) The MAP in P
must be anchored on P .

Proof. Suppose Q = ABA0B0 is a parallelogram in-
scribed but not anchored on P . We will show that Q
is not the MAP in P . First, assume neither pair a, a0

nor b, b0 is parallel to each other, otherwise the theorem
is trivial to prove. Assume a is in the narrow side. We
can construct a new parallelogram as follows. Since A
is not on an endpoint of a, we can move A a little bit
along a so that C

A

decreases (see Lemma 14). We keep

the position of A0 so that C
A

0 doesn’t change. After-
ward we replace the new center E by the midpoint of
segment AA0. Then according to Lemma 9, B and B0

can be computed since b0, b0, and E are all fixed. We can
make sure that B,B0 will still be inside segments b, b0 re-
spectively by only moving A for a su�ciently small dis-
tance. We know that the area of this new parallelogram
is larger than the area of Q according to Lemma 12.
Hence Q is not the MAP in P . ⇤

Theorem 15 leads one to wonder whether the MAP
must always be double-anchored on P (that is, whether
the MAP must have two of its corners on vertices of
P). Unfortunately, this is not the case. Figure 9 in
the Appendix illustrates an example where the double-
anchored MAP is smaller than the actual MAP.

To design our algorithm for finding the MAP, we di-
vide anchored parallelograms into two cases, described
by the following definitions:

Definition 16 We say that a parallelogram Q is

adjacent-double-anchored on a polygon P if it is in-

scribed on P and two adjacent corners lie on the vertices

of P .

Definition 17 We say that a parallelogram Q is

opposite-free-anchored on a polygon P if it is an-

chored on P but has two opposite corners which are not

anchored.

Note that for a parallelogram Q anchored on P , it
must either be adjacent-double-anchored, or opposite-
free-anchored; it cannot be both.

3 The Algorithm

In this section we describe our algorithm for finding the
MAP in a convex polygon. Our general algorithm will
actually consist of two algorithms, one to handle the
case when the MAP is opposite-free-anchored, and the
other to handle the case when the MAP is adjacent-
double-anchored. Both algorithms use similar ideas,
and have running time O(n2).

3.1 The Opposite-Free-Anchored Case

First we give an algorithm for finding the MAP when
the MAP is opposite-free-anchored. Without loss of
generality, assume that B,B0 are not anchored, and
are inscribed on b, b0 respectively. Let A be the ver-
tex in the narrow side and A0 in the broad side. Let
M

b1,b2 (M for short) be the point in P such that

Cb1,b2

M

= max{Cb1,b2

V

|V 2 P}. For fixed b and b0, the
following corollary of Lemma 14 helps us compute the
optimal placement of M .

CCCG 2011, Toronto ON, August 10–12, 2011

Figure 5: Either M = Z
c

(pictured at left), or M is on
a vertex of P (pictured at right)

Corollary 18 There is at most one edge c in the broad

side such that Z
c

actually lies on c. When there is such

an edge, then M = Z
c

. When there is not such an edge,

then M is on a vertex formed by two edges denoted c
and d. The point Z

c

lies to the right of M , and the

point Z
d

lies to the left of M (see Figure 5).

We are now ready to prove one of the main theorems
behind our algorithm in the opposite-free-anchored case.
Suppose B and B0 are non-anchored vertices on fixed
edges b and b0. The following theorem reduces the com-
putation of the optimal placement of A and A0 to a finite
set of possibilities:

Theorem 19 Suppose Q is the opposite-free-anchored

MAP on P , where B and B0
are located on (non-

endpoints) of b and b0, A is in the narrow side and A0

is in the broad side. Then A0 = M , and A is anchored

on P .

Proof. From Corollary 18, we know that if a dynamic
point D goes from one end in the broad side to another,
C

D

will increase before D reaches M , and decrease after
D reaches M . So if A0 6= M , there exists an A⇤ 2 P
near A0 such that C

A

⇤ > C
A

0 . Then, as in the proof of
Theorem 15, we should be able to slightly adjust B and
B0 (still on b and b0) to construct a new parallelogram
with vertices A⇤, A, and two vertices on b, b0, which has
area bigger than that of Q. This is a contradiction.
Similarly, suppose A is not anchored on P . There ex-

ists a point A⇤ near A such that C
A

⇤ < C
A

. Again, this
means we should be able to slightly adjust A, and then
B,B0, to construct a new parallelogram with vertices
A⇤, A0 and two vertices on b, b0 with area bigger than
that of Q. This is also a contradiction. ⇤

Theorem 19 suggests a simple enumerative algorithm
in the opposite-free-anchored case: for each pair of edges
(b, b0), compute the optimal A0 and A by cycling through
all possibilities. This is described in Algorithm 1.
If implemented naively, the time complexity of Al-

gorithm 1 is O(n3). In order to speed up it further,
we employ a rotating technique of Toussaint [10]. The
main idea is to show that it isn’t necessary to spend
O(n) time calculating A and A0 for every pair of edges
(b, b0). In fact, it can be done in amortized O(1) time.

foreach edge b 2 P ,b0 2 P do1

foreach vertex V 2 P , V not on b or b0 do2

A0 V if C
V

> C
A

0 .3

end4

foreach edge c 2 P, c 6= b, c 6= b0 do5

A0 Z
c

if C
Zc > C

A

0 and Z
c

2 P .6

end7

foreach vertex A 2 P , A not on b or b0 do8

E the midpoint of AA0.9

Compute B,B0 by Lemma 9.10

Q ABA0B0 if Area(ABA0B0) > Area(Q)11

and ABA0B0 is inside P .
end12

end13

Algorithm 1: opposite-free-anchored

Suppose we fix an edge b, and consider the sequence of
pairs (b, b01), (b, b

0
2), (b, b

0
3), . . . , where the edge sequence

b01, b
0
2, b

0
3, . . . is formed by walking counter-clockwise

along the boundary of P . Let A
i

and A0
i

be the
optimal values computed for the pair (b, b0

i

). Then it is
possible to show that the sequences A1, A2, A3, . . . , and
A0

1, A
0
2, A

0
3, . . . , also move counter-clockwise along the

boundary of P . Thus, for a fixed b, we only spend O(n)
time calculating all values of A

i

and A0
i

. Repeating
with all other edges in place of b yields an O(n2) time
algorithm.

To prove this, there are two stages in Algorithm 1
that need to be analyzed carefully. For every pair (b, b0),
the first stage (lines 2-7) takes O(n) time to find A0,
the second stage (lines 8-12) also takes O(n) time to
enumerate all the vertices in the narrow side to find A.

To show that the first stage can be made to have small
amortized cost, we cite the following lemma:

Lemma 20 (A monotone property of A0)
Suppose b is fixed, and b0 moves counter-clockwise

along P . Then the distances between A0
and b are

non-decreasing. In other words, A0
can also only

move counter-clockwise around P (see Figure 7 for an

example).

The proof of Lemma 20 is simple. We omit it due to
space limitations.

For the second stage, let P
A

0(b, b0) be a 2-scaling of
P (b, b0) around point A0. We claim that A 2 P

A

0(b, b0),
because E 2 P (b, b0) and E is the midpoint of AA0 (see
Figure 6).

Lemma 21 The parallelograms P
A

0
1
(b, b01), P

A

0
2
(b, b02),

P
A

0
3
(b, b03), . . . are all non-overlapping. Additionally,

their distance to line b is decreasing (see Figure 7 for

an example).

23rd Canadian Conference on Computational Geometry, 2011

Figure 6: P
A

0(b, b0) is the region where A might lie.

Proof. First, P
A

0
i
(b, b0

i

) are parallelograms, two sides of
which are parallel to b. While b0 is shifting, the dis-
tances between P (b, b0

i

) and line b is decreasing, and the
distances between A0

i

and line b is non-decreasing, so the
distances between P

A

0
i
(b, b0

i

) and b is decreasing. Thus,
they do not overlap with each other. ⇤

In line 8 of Algorithm 1, if we replace “A 2 P” with
“A 2 P

A

0(b, b0)”, then for a fixed b each vertex A will
be enumerated at most once. Hence the this stage can
be reduced to O(1) time on average, and therefore Al-
gorithm 1 can be implemented in O(n2) time total.

Figure 7: Illustration of Algorithm 1

3.2 The Adjacent-Double-Anchored Case

Next we give an algorithm for finding the MAP when
the MAP is double-adjacent-anchored.

While it is tempting to just run Algorithm 1 and hope
that it works in this case too, unfortunately it does not.
The reason is that Theorem 19 crucially assumes that
B and B0 are flexible on b and b0, in order to reduce
the space of possible values for A and A0. Without the
guarantee that B and B0 are not anchored, it is possible

that the best choice of A0 is not equal to M , or that the
best choice of A is not on a vertex of P .

Nevertheless, when we assume the MAP has two ad-
jacent anchored vertices, we can still prove some con-
straints on the placement of the other vertices. This al-
lows us to develop an algorithm similar to Algorithm 1
that enumerates over all choices of anchored vertex B
and opposite edge b0. If implemented correctly, this al-
gorithm can be made to run in O(n2) by showing an
amortized analysis similar to the one we used before.

Due to space limitations, we present the full details
of our algorithm in the adjacent-double-anchored case
in the Appendix.

Acknowledgments

The authors are grateful to the anonymous reviewers
of an earlier version of this paper for pointing out the
references [5, 8] and for other helpful comments.

The authors would also like to thank Xiaoming Sun,
Tiancheng Lou, and Zhiyi Huang for taking part in
fruitful discussions.

References

[1] J. E. Boyce, D. P. Dobkin, R. L. Drysdale, III, and
L. J. Guibas. Finding extremal polygons. In Proc. of
the 14th annu. ACM symp. on Theory of comp., STOC
’82, pages 282–289, New York, NY, USA, 1982. ACM.

[2] J. Chang and C. Yap. A polynomial solution for the
potato-peeling problem. Discrete and Computational
Geometry, 1:155–182, 1986. 10.1007/BF02187692.

[3] M. Daniels and Roth. Finding the largest area axis-
parallel rectangle in a polygon. CGTA: Computational
Geometry: Theory and Applications, 7, 1997.

[4] D. Dobkin and L. Snyder. On a general method for
maximizing and minimizing among certain geometric
problems. In Proceedings of the 20th Annual Symposium
on FOCS, pages 9–17. IEEE Computer Society, 1979.

[5] C. Dowker. On minimum circumscribed polygons. Bull.
Amer. Math. Soc, 50:120–122, 1944.

[6] S. P. Fekete. Finding all anchored squares in a con-
vex polygon in subquadratic time. In Proc. 4th Canad.
Conf. Comput. Geom., pages 71–76, 1992.

[7] J. O. N. Adlai De Pano, Yan Ke. Finding largest in-
scribed equilateral triangles and squares. In Proc. Aller-
ton Conf., pages 869–878, 1987.

[8] E. Sas. über ein extremumeigenschaft der ellipsen.
Compositio Math, 6:468–470, 1939.

[9] M. Shamos. Computational geometry. 1978.

[10] G. Toussaint. Solving geometric problems with the ro-
tating calipers. In Proc. IEEE Melecon, volume 83,
pages 1–4. Citeseer, 1983.

