
CCCG 2011, Toronto ON, August 10–12, 2011

Minimum Many-to-Many Matchings for Computing the Distance Between
Two Sequences

Mustafa Mohamad ∗ David Rappaport † Godfried Toussaint ‡

Abstract

Motivated by a problem in music theory of measuring
the distance between chords and scales we consider algo-
rithms for obtaining a minimum-weight many-to-many
matching between two sets of points on the real line.
Given sets A and B, we want to find the best rigid
translation of B and a many-to-many matching that
minimizes the sum of the squares of the distances be-
tween matched points. We provide a discrete algorithm
that solves this continuous optimization problem, and
discuss other related matters.

1 Introduction

Measuring the similarity between two sequences is a
problem that arises in many fields including: com-
putational biology [1], computational music theory
[11],[12], [13] computer vision [5], and natural language
processing [2]. There is a variety of ways to measure
the distance between two sequences depending on
the specific field of study. Let A = {a1, a2, . . . , am}
denote points on a line, such that ai < ai+1 for all
i, 1 ≤ i ≤ m − 1. Similarly we use B = {b1, b2, . . . , bn}
to denote a sorted set of distinct points on a line. A
many-to-many matching pairs one point in A to at
least one point in B and vice versa. Given a cost
function d(a, b) defined on each matched pair, the cost
of the matching is the sum of the costs of all matched
pairs. A minimum-weight many-to many matching is
one that minimizes cost. We can use the value of the
cost of the minimum-weight many-to-many matching
to measure the distance between A and B, which we
denote by d(A,B).

Our result. We tackle this problem with two different
cost measures for d(a, b). The first is the absolute value

∗School of Computing, Queen’s University, Kingston, ON
mustafa@cs.queensu.ca.
†School of Computing, Queen’s University, Kingston, ON

Research supported by NSERC Discovery Grant 388-329.
daver@cs.queensu.ca
‡Department of Music, Harvard University, Cambridge, MA,

Department of Computer Science, Tufts University, Medford, MA,
School of Computer Science, McGill University, Montreal, QC.
godfried@cs.mcgill.ca

of the difference:

d1(a, b) = |a− b| (1)

The second is the square of the difference:

d2(a, b) = d2
1 (2)

We review algorithms for computing these measures
to characterize their differences.

A more difficult version of this problem considers sim-
ilarity measures between A and B allowing rigid trans-
lation. That is, we define Bt = {b1 + t, b2 + t, ..., bn + t}
as a rigid translation of B by the amount t. We
present algorithms for computing the minimum-weight
many-to-many matching between A and B under such
rigid translations. We provide an O(mn) algorithm for
computing the minimum d1(A,Bt) and an O(3mn) for
computing the minimum d2(A,Bt). The theoretical
upper bound for our algorithm for minimizing d2(A,Bt)
is useful to show that our algorithm is guaranteed to
terminate. We also provide experimental results that
exhibits polynomial running time of our algorithm on
random data.

Preliminaries. In what follows we use N to denote the
size of the input. Previous work by Karp and Li [7] and
Werman et al. [14] propose an O(N logN) algorithm
for computing the minimum weight one-to-one match-
ing for two equal cardinality point set. The minimum-
weight one-to-one matching in this case is the identity
matching which is computed by first sorting the points
and then mapping a point ai to a point bi. Karp and Li
[7] also solve the case where |A| 6= |B| in O(N logN).
Colannino et al. [3] extended the work of Karp and Li [7]
to compute the minimum-weight many-to-one matching
on the real line in O(N logN). All these results are for
the d1 measure.

The minimum-weight many-to-many matching has
also been studied extensively. In a graph theoretic set-
ting, this is equivalent to finding a minimum-weight
edge cover of a complete bipartite graph. For an
arbitrary bipartite graph, the minimum-weight edge
cover can be computed by reducing the problem to the
the minimum-weight perfect matching problem [6], [10]
which can be computed in O(N3) time using the Hun-
garian Algorithm proposed by Kuhn [8]. There is an



23d Canadian Conference on Computational Geometry, 2011

O(Nω) algorithm for optimal weighted matching in bi-
partite graphs due to Mucha and Sankowski [9], where
ω is the exponent in the best matrix multiplication algo-
rithm (currently ω = 2.38). For the special case where
A and B are points on the real line and using the d1

weight, Colannino et al. [4] provide an O(N logN) al-
gorithm.

2 Computing a Minimum-Weight Many-to-Many
Matching

We review the O(N logN) algorithm for solving the
minimum-weight many-to-many matching problem us-
ing the d1 measure due to Colannino et al. [4], and
then show why properties that are used to gain efficien-
cies do not hold when using the d2 measure. Without
loss of generality, the set A is assumed to have the left-
most element in A ∪ B. The algorithm partitions the
set of sorted points into P0, P1, P2, ... subsets such that
all points in Pi are less than all points in Pi+1, where
P0 is a maximal subset of consecutive points in A, P1 is
a maximal subset of consecutive points in B, and so on
(see Figure 1).

Figure 1: Partitioning of the set A ∪B

We use the term consecutive partitions to refer to two
neighbouring partitions such as P0 and P1. The match-
ing is computed using an optimized dynamic program-
ming approach that uses special properties of the struc-
ture of the optimal matching to reduce the complexity
of the dynamic program from O(mn) to O(N) for sorted
point sets. One of the d1 properties that allows for an
efficient algorithm is the fact that the optimal way to
match s consecutive points in two consecutive partitions
is to use the identity matching where ai is paired with
bi for i = 1...s. However, this property does not hold
for the d2 measure (see Figure 2). With the d2 measure
all possibilities of matching two subsets of s points in
two consecutive partitions must be checked.

In order to compute the many-to-many matching that
minimizes d2(A,B) we use a dynamic programming al-
gorithm. (Note: A similar dynamic programming algo-
rithm has been described by Tymoczko [13]). The algo-

3 4 5

321

3 4 5

321

A

B

Figure 2: The identity matching on the left is optimal
for d1 with d1(A,B) = 6. However it is not optimal for
d2 where d2(A,B) = 12. The matching on the right is
optimal for d2 with d2(A,B) = 10. As can be seen the
edge (2, 4) is only optimal for d2 if ε >

√
2 or ε < −

√
2

rithm stores the optimal solutions to each subproblem in
a table, W , of dimension m× n. The entry wij in table
W stores the optimal matching, d2(Ai, Bj), of Ai and
Bj , where Ai = {a1, a2, ..., ai} and Bj = {b1, b2, ..., bj}.
Therefore, the entry wmn will store the weight of the
minimum weight many-to-many matching. Refer to Al-
gorithm 1 for the pseudocode. The following lemma
proves our claim that wmn stores the minimum weight.

Lemma 1 The optimal value of Wij is given by W ∗ +
d(ai, bj) where W ∗ = min(Wi−1,j ,Wi,j−1,Wi−1,j−1)

Proof. Suppose we have a many-to-many matching M
of Ai and Bj such that {ai, bj} /∈ M . Therefore ai

is matched with a b` ∈ Bj such that b` < bj and bj
is matched with an ak ∈ Ai with ak < ai. Observe
that the cost of this matching can be lowered by replac-
ing {ai, b`} and {ak, bj} by {ai, bj} and {ak, b`}, be-
cause (bj − ak)2 + (ai − b`)2 − (ak − b`)2 − (ai − bj)2 =
(ai − ak)(2bj − 2b`) is positive. This implies that the
edge {ai, bj}must be part of the minimal many-to-many
matching of Ai and Bj . Furthermore, the edge {ai, bj}
is connected to a minimum cost many-to-many match-
ing of Ai−1 and Bj or Ai and Bj−1 or Ai−1 and Bj−1.
Since the best subproblem is chosen, Wij must be opti-
mal. �

Once table W is computed, the actual matching can
be extracted from it in O(mn) time. The idea is to
traverse table W from the entry Wm,n backwards until
the entry W1,1 is reached. At each step in the traver-
sal, there are three choices to make and the one with
the minimum weight is chosen. Clearly the combined
complexity of both algorithms is bounded by the size of
table W , therefore the total complexity of finding the
minimum-weight matching is O(mn).

3 Finding the Minimum-Weight Many-to-Many
Matching under Translations

Given sets of points on a line A and B, a coincident pair
is a point a ∈ A and a point b ∈ B such that a = b.
When using the d1 measure we show that there is always



CCCG 2011, Toronto ON, August 10–12, 2011

Algorithm 1 Dynamic programming algorithm to
compute the minimum weight many-to-many matching
using the d2 measure
{Initialization}
W1,1 ← d(a1, b1)
for i = 2 to m do
Wi,1 ←Wi−1,1 + d(ai, b1)

end for
for j = 2 to n do
W1,j ←W1,j−1 + d(a1, bj)

end for
{Main Loop}
for i = 2 to m do

for j = 2 to n do
W ∗ ← min(Wi−1,j ,Wi,j−1,Wi−1,j−1)
Wi,j ←W ∗ + d(ai, bj)

end for
end for
{Wmn stores the weight of the optimal many-to-many
matching}
return Wmn

an instance of the optimal many-to-many matching un-
der translation with a coincident pair.

Lemma 2 Let M be a many-to-many matching of point
sets A and B. Then there exists a rigid translation t of
the point set B yielding at least one coincident pair such
that:

∑
{ai,bj}∈M

|ai − bj − t| ≤
∑

{ai,bj}∈M

|ai − bj |. (3)

Proof. If a point from A coincides with a point from
B then we are done. For a ∈ A, b ∈ B, and {a, b} ∈M
an edge is a left edge if a < b and a right edge if a > b.
Since none of the points coincide, we don’t have the case
where a = b. If the number of left edges is greater than
the number of right edges we set t for a rigid translation
that moves the points B to the right to encounter the
first coincident pair, and if the number of right edges is
greater than or equal to the number of left edges we set
t for a rigid translation that moves the points B to the
left to encounter the first coincident pair. In either case
it is easy to verify that we get the desired inequality. �

Lemma 2 implies that an optimal many-to-many min-
imum weight matching allowing translations can be
found in O(mn) time by applying the algorithm due
to Colannino et al. [4] to each alignment of A and B
that realizes a coincident pair.

The same argument cannot be extended to the d2

measure. To see this, suppose A = (a1 = 2, a2 = 4, a3 =
6), B = (b1 = 2, b2 = 4). Aligning any element of
A with any element of B results in a d2(A,B) = 4.

On the other hand, if we translate B by t = 1, we get
d2(A,B1) = 3. In fact, this is still not optimal. The op-
timal value is t = 1.33, where d2(A,B1.33) = 2.667. To
the best of our knowledge, currently, there does not ex-
ist an ”easy” way of computing the optimal translation,
toptimal, that would lead to minimizing d2(A,Bt).

We have developed an algorithm that uses a finite
number of steps to find toptimal. Let M be the match-
ing for d2(A,B). In table W in Algorithm 1, Wi,j =∑
{ai,bj}∈M (ai − bj)2. We now add the translation vari-

able, t, to every entry of the table W . The modified en-
try is Wi,j =

∑
{ai,bj}∈M (ai − bj − t)2. Therefore the

cost of a matching is captured by the function:

f(t) =
∑

{ai,bj}∈M

(ai − bj − t)2 (4)

In order to find the t value that optimizes f(t) we
take the first derivative of f(t) and set it to zero to get

t =

∑
{ai,bj}∈M

(ai − bj)

|M |
. (5)

Our approach is to iteratively translate the point set
B by a positive amount a finite number of times, ensur-
ing that we do not pass over an optimal location for B.
Recall that to compute the value ofWi,j , the cost of edge
{ai, bj} is summed to one of the following three subprob-
lems: Wi−1,j ,Wi,j−1,Wi−1,j−1. Therefore a change in
W happens when one of the non-chosen subproblems
becomes a better choice than the currently chosen sub-
problem. Graphically, each subproblem is represented
by a parabola, therefore it is easy to determine where
a change might happen by computing the intersection
of the parabola representing the current choice with the
parabolas representing the two other choices. Using this
idea we formulate an algorithm for finding the optimal
translation, toptimal. We start with the set B all the
way to the left of A and compute W . Next, we find all
intersections between each chosen subproblem (i.e part
of the matching) and the two non-chosen subproblems
related to it. Out of all intersections, we pick the one
with the smallest positive t value. We translate B by
this t value and repeat the process until B is translated
all the way to the right of A. We store the minimum cost
for the matchings as B is being translated. This process
guarantees that at least one of the iterations finds the
best many-to-many matching. Once B has been trans-
lated all the way to the right of A, we pick the smallest
value out of all stored values.(Refer to Algorithm 2).

To bound the number of iterations that the algorithm
uses and to show that it terminates we define a table, F ,
that stores the choice of the subproblem made for each
entryWij inW . Entries in the table store the values 1 or
2 or 3 depending on whether Wi−1,j−1,Wi−1,j ,Wi,j−1 is
the optimal subproblem for Wij . We use Fk to represent



23d Canadian Conference on Computational Geometry, 2011

Algorithm 2 Algorithm for computing d2(A,Bt)

{Initialization}
results← an empty list
{Shift B to the left of A (i.e. bn = a1)}
t← 0
limit ← am {Used to stop the loop when all of B is
the right of A (i.e. b1 = am)}
while b1 ≤ limit do

Compute optimal matching M for (A,Bt) using Al-
gorithm 1
Compute the minimum cost R for M using equa-
tion 5
Add (R,M) to results
for i from 2 to m do

for j from 2 to n do
intersects[i, j]← positive intersections of cur-
rent subproblem with the other two subprob-
lems for Wi,j

end for
end for
nexTrans← min(intersects[i, j])
Bt ← Bt + nextTrans
t← t+ nextTrans

end while
index = min(first column of results)
bestMatching ← results[index, 2]
return bestMatching

the state of table F at the end of iteration k of the
algorithm.

Theorem 1 Algorithm 2 terminates after O(3mn) iter-
ations.

Proof. There are three possible values for every entry
in the m× n table F , so O(3mn) is an upper bound on
the total number of distinctly different instances of F .
We argue that no two instances of F , Fk , and F` at
iterations k and ` respectively, are identical. Assume
for the sake of contradiction that such a pair of tables
exist. Thus, the algorithm will iterate forever in a cycle
between these instances. Recall that at each iteration of
the algorithm we translate the pointsB by some positive
t. Therefore, at iteration ` the location of the points B,
call it B`, are to the right of the points at iteration
k, Bk. Since we are in a cyclic pattern we have F`+1

identical to Fk+1, and so on as the cycle repeats. This
implies that there are a pair of parabolas, p and q that
have infinitely many intersection points, a contradiction.
Thus, Algorithm 2 cannot cycle, and must terminate
after O(3mn) iterations. �

Theorem 2 Algorithm 2 computes d2(A,Bt)

Proof. Assume there is a translation, t, of the set
B for which a minimal d2(A,Bt) is realized. Clearly,

a1 − bn ≤ t ≤ am − b1. Therefore, t must correspond
to a matching in which B falls within the above range.
Algorithm 2 considers all possible matchings between
A and B that occur as B is being translated within
(a1−bn, am−b1). It does so by recomputing the match-
ing every time one of the subproblems becomes a better
choice than any other subproblem anywhere in table
W . Therefore, the matching that corresponds to t must
be found by Algorithm 2. For every matching consid-
ered, the algorithm finds the translation that optimizes
it. This translation must be equal to t since t is opti-
mal. �

3.1 Experimental Results for Algorithm 2

The upper bound that we provide for Algorithm 2 does
not appear to be tight. We have not been able to
construct an example that requires a super-polynomial
number of steps. We ran various experiments to gain
a better understanding of the true running time of the
algorithm. We know that for each translation that the
algorithm makes it takes O(mn) time to compute the
distance using dynamic programming. What concerns
us is the number of translations that Algorithm 2 makes
before finding the optimal translation. Therefore, the
number of translations determines whether the algo-
rithm has a polynomial running time or not. We com-
pare the total number of translations to the the product
of the cardinalities mn. We defined a ratio, R, by the
following equation:

R =
number of translations

mn

The first experiment was to randomly generate the
sets A and B with specific cardinalities, m and n. For
the cardinalities chosen, A and B were randomly gener-
ated 5 times. The pair that caused the largest number
of translations is reported in Table 1. It can be seen that
the number of translations of the algorithm is much less
than the theoretical upper bound of O(3mn). However,
the ratio R seems to be slowly increasing and therefore
we cannot experimentally bound the number of itera-
tions by mn. Testing the conjecture that the number of
translations is poly-logarithmic, we define a new ratio
R2 as:

R2 =
number of translations

mn× log(mn)

Referring to Table 1, it can be seen that R2 increases
at first and then continues to decrease. This appears to
indicate that the running time of Algorithm 2 cannot be
larger than a constant×mn log(mn). Our experimental
results indicate that the constant should not be greater
than 2.

In our second experiment, A and B were two ran-
domly generated sets of 10 points where A and B are



CCCG 2011, Toronto ON, August 10–12, 2011

Table 1: Experimental Results of running Algorithm 2

m n Number of Translations R R2

5 5 63 2.52 0.78
8 10 247 3.09 0.70
15 11 589 3.57 0.70
16 20 1182 3.69 0.64
21 20 1556 3.70 0.61
25 28 2655 3.79 0.62
30 30 3520 3.91 0.62
30 20 2379 3.96 0.58
15 31 1758 3.78 0.57
40 45 7038 3.91 0.52
50 55 10990 4.00 0.54
60 61 14769 4.01 0.51
25 80 8151 4.08 0.49
90 100 37176 4.13 0.45

the same set. We compressed B by dividing the ele-
ments of B by an ever increasing factor and ran the
algorithm. Overall, R2, first increased as B was further
compressed by dividing by a larger number. However,
the trend reached a peak, and as B was compressed
further R2 started to continuously decrease. Table 2
summarizes our results.

Table 2: Experimental Results of running Algorithm 2
on Compressed B datasets where m = n = 10

Divisor Number of Translations R R2

1 180 1.80 0.39
2 110 1.10 0.24
4 207 2.07 0.45
6 225 2.25 0.49
10 282 2.82 0.61
102 540 5.40 1.17
103 560 5.60 1.22
104 426 4.26 0.93
105 367 2.67 0.80
106 223 2.23 0.48
107 224 2.24 0.49
108 116 1.16 0.25
109 66 0.66 0.14

Picking the largest number of translations in this
dataset, we can see that the value of R2 seems to be
slightly higher than the random data set of Table 1.
Namely, 1.22 versus 0.78. We performed the same ex-
periment with different cardinalities. The same pattern
was noticed. R2 increased at first and then continuously
decreased. In this case, the peak R2 is 1.54. For each
cardinality, Table 3 shows the results of the compres-
sion that caused the largest number of translations and
therefore the largest R2. The R2 values are generally
higher than all previous results, however, we note that

Table 3: Experimental Results of running Algorithm 2
on Compressed B datasets of different cardinalities

m = n m× n Number of Translations R R2

15 225 1817 8.07 1.49
20 400 2680 6.70 1.18
25 625 4266 6.83 1.06
30 900 9402 10.45 1.54
35 1225 10822 8.83 1.24
40 1600 13741 8.59 1.16
45 2025 14761 7.29 0.96

the largest R2 value of 1.54 is still less than 2. Similar
results were obtained for A 6= B.

Another possibility for a data set that might not have
been well captured by generating points randomly, is to
have configurations that contain clusters of contiguous
points. We generated different cluster configurations for
m = 15 and n = 11. In Table 4, a configuration of (3,2)
indicates the set A is composed of 3 clusters of points
separated by some distance, and likewise the set B is
composed of 2 clusters. Each cluster is composed of a
fixed number of points that fall within a specific range.
The cluster points are generated randomly within the
specified range for each cluster. For each cluster config-
uration, the experiment was run 10 times and the trial
with the largest number of translations is shown in Ta-
ble 4. It can be seen in Table 4 that the largest value
for R2 is 0.80 which is still less than 2.

Table 4: Experimental Results of running Algorithm 2
on different clustered configuration where |A| = 15 and
|B| = 11

Configuration Number of Translations R R2

(3,3) 615 3.73 0.73
(3,2) 676 4.10 0.80
(4,4) 616 3.73 0.73
(4,2) 644 3.90 0.77
(4,1) 678 4.11 0.80

Figure 3 shows that the function f(mn) =
2mn log(mn) is an upper bound for all our experimen-
tal results. Given these results, we conclude that for
the data that we have generated Algorithm 2 exhibits a
polynomial running time.

4 Conclusion

We have presented an iterative algorithm to solve a con-
tinuous optimization problem, that appears to be effi-
cient when applied to randomly generated instances. To
date, we have not been able to determine a means to
analyze the method to obtain reasonable bounds on the
worst case running time of the algorithm. Therefore, we



23d Canadian Conference on Computational Geometry, 2011

0 2000 4000 6000 8000

0
50

00
0

10
00

00
15

00
00

2m
nlo

g(
m

n)

●●●●●●●● ●
● ●

●
●

●

●● ● ●

● ●
● ●

Experimental Complexity

mn

N
um

be
r 

of
 T

ra
ns

la
tio

ns

Experiment 1
Experiment 2
Experiment 3

●●●●●

Figure 3: Summary of experimental results shows that
all our data fall under the curve 2mn log(mn)

leave open the issue of obtaining a better bound on the
number of iterations used by this algorithm. It may be
that some modifications could be made to the existing
algorithm so that it would be easier to analyze. It may
also be the case that an entirely different approach could
be used to solve the problem in polynomial time. Alter-
nately, perhaps it can be shown that this optimization
problem is NP-hard.

5 Acknowledgements

This work was initiated at the 2nd Bellairs Winter
Workshop on Mathematics and Music, co-organized
by Dmitri Tymoczko and Godfried Toussaint, held on
February 6-12, 2010. We thank the other participants
of that workshop, Fernando Benadon, Adrian Childs,
Richard Cohn, Rachel Hall , John Halle, Jay Rahn, Bill
Sethares, and Steve Taylor, for providing a stimulating
research environment.

References

[1] A. Ben-Dor, R. M. Karp, B. Schwikowski, and
R. Shamir. The restriction scaffold problem. Journal
of Computational Biology, 10(2):385–398, 2003.

[2] S. R. Buss and P. N. Yianilos. A bipartite matching
approach to approximate string comparison and search.
Technical report, NEC Research Institute, 1995.

[3] J. Colannino, M. Damian, F. Hurtado, J. Iacono,
H. Meijer, S. Ramaswami, and G. Toussaint. An

O(n log n) time algorithm for the restriction scaffold as-
signment problem. Journal of Computational Biology,
13(4):979–989, 2006.

[4] J. Colannino, M. Damian, F. Hurtado, S. Langerman,
H. Meijer, S. Ramaswami, D. Souvaine, and G. Tous-
saint. Efficient many-to-many point matching in one di-
mension. Graphs and Combinatorics, 23:169–178, 2007.

[5] M. F. Demirci, A. Shokoufandeh, Y. Keselman, L. Bret-
zner, and S. Dickinson. Object recognition as many-to-
many feature matching. International Journal of Com-
puter Vision, 69(2):203–222, 2006.

[6] T. Eiter and H. Mannila. Distance measures for
point sets and their computation. Acta Informatica,
34(2):109–133, February 1997.

[7] R. M. Karp and S.-Y. R. Li. Two special cases of the as-
signment problem. Discrete Mathematics, 13:129–142,
1975.

[8] H. W. Kuhn. The Hungarian method for the assignment
problem. Naval Research Logistics, 2:83–97, 1955.

[9] M. Mucha and P. Sankowski. Maximum matchings via
Gaussian elimination. In Foundations of Computer Sci-
ence, 2004. Proceedings. 45th Annual IEEE Symposium
on, pages 248 – 255, oct. 2004.

[10] A. Schrijver. Combinatorial Optimization:Polyhedra
and Efficiency. Springer-Verlag Berlin Heidelberg,
2003.

[11] G. Toussaint. A comparison of rhythmic similarity mea-
sures. In Proceedings of the 5th International Confer-
ence on Music Information Retrieval, pages 242–245,
2004.

[12] G. Toussaint. The geometry of musical rhythm. In Se-
lected Papers of the Japanese Conference on Discrete
and Computational Geometry, J. Akiyama et al., ed-
itors,volume 3742 of LNCS, pages 198–212. Springer-
Verlag, Berlin, Heidelberg, 2005.

[13] D. Tymoczko. The geometry of musical chords. Science,
313(5783):72 – 74, July 2006.

[14] M. Werman, S. Peleg, R. Melter, and T. Y. Kong. Bi-
partite graph matching for points on a line or a circle.
Journal of Algorithms, 7:277–284, 1986.


