
CCCG 2011, Toronto ON, August 10–12, 2011

A Discrete and Dynamic Version of Klee’s Measure Problem

Hakan Yıldız∗ John Hershberger† Subhash Suri∗

Abstract

Given a set of axis-aligned boxes B = {B1, B2, . . . , Bn}
and a set of points P = {p1, p2, . . . , pm} in d-space, let
the discrete measure of B with respect to P be defined
as meas(B,P) = |P ∩ {

⋃n
i=1Bi}|, namely, the number

of points of P contained in the union of boxes of B.
This is a discrete and dynamic version of Klee’s measure
problem, which asks for the Euclidean volume of a union
of boxes. Our result is a data structure for maintaining
meas(B,P) under dynamic updates to both P and B,

with O(logd n + m1− 1
d) time for each insert or delete

operation in B, O(logd n + logm) time for each insert
and O(logm) time for each delete operation in P, and
O(1) time for the measure query. Our bound is slightly
better than what can be achieved by applying a more
general technique of Chan [3], but the primary appeal
is that the method is simpler and more direct.

1 Introduction

A classical problem in computational geometry, known
as Klee’s Measure Problem, asks for an efficient algo-
rithm to compute the volume of the union of n axis-
aligned boxes in d dimensions. While optimal O(n log n)
time algorithms are known for dimensions one and
two [1, 7], the best bound in higher dimensions is
roughly O(nd/2) [4]. Indeed, despite more than twenty
years of effort, the barrier of O(n3/2) remains unbroken
even in three dimensions. It is known, however, that
as the dimension becomes large, the problem is NP–
hard [2].

In this paper, we consider a discrete and dynamic
version of Klee’s problem, in which the volume of a box
is defined as the cardinality of its intersection with a
finite point set P, and both the boxes and the points
are subject to insertion and deletion. In particular, we
have a set of axis-aligned boxes B = {B1, B2, . . . , Bn},
a set of points P = {p1, p2, . . . , pm} in d-space, and we
wish to maintain the discrete measure of B with respect
to P, namely, meas(B,P) = |P ∩ {

⋃n
i=1Bi}|, under

insertion and deletion of both points and boxes.

The problem is fundamental, and arises naturally in
several applications dealing with multi-attribute data.

∗Department of Computer Science, University of California,
Santa Barbara, {hakan,suri}@cs.ucsb.edu
†Mentor Graphics Corp., john_hershberger@mentor.com

In databases, for instances, data records with d inde-
pendent attributes are viewed as d-dimensional points,
and selection rules are given as ranges over these at-
tributes. A conjunction of ranges over d attributes is
then equivalent to a d-dimensional box. Given a set
of selection rules, the problem of counting all the data
records that satisfy the union (namely, the disjunction)
of all the rules is our discrete measure problem. Sim-
ilarly, one may ask for the set of records that fail to
satisfy any of the rules, and thus form the set of points
“not covered” by the union of boxes.

Similarly, the management of firewall rules for net-
work access can also be formulated as a discrete mea-
sure problem. The data packets in the Internet are clas-
sified by a small number of fields, such as IP address of
the source and destination, the network port number,
etc. The managers of a local area network (LAN) use
a number of “firewall rules” based on these attributes
to block some external services (such as ftp) from their
network. The discrete measure problem in this setting
keeps track of the number of services blocked by all the
firewall rules; conversely, one can keep track of the num-
ber of services that become “exposed” by the deletion
of a box.

Problem Formulation and Our Results

We begin with a formal definition of the problem. A
d-dimensional box B is the Cartesian product of d one-
dimensional ranges, namely B =

∏d
i=1[ai, bi], where ai

and bi are reals. The discrete measure of a single box B
with respect to a finite set of points P is the cardinality
of the intersection P ∩ B. The discrete measure of the
set of boxes B with respect to P, denoted meas(B,P),
is the cardinality of P ∩ {

⋃
B∈B B}. (Because a point

may lie in multiple boxes, the discrete measure of B is
not the sum of the measures of the individual boxes.) In
this paper, we consider the problem of maintaining the
discrete measure under insertion and deletion of both
points and boxes. Specifically, we propose a data struc-
ture that supports modifying P through insertion or
deletion of a point, modifying B through insertion or
deletion of a box, and querying for the current discrete
measure meas(B,P).

Despite its natural formulation, the problem appears
not to have been studied in this form. This may be
partially attributed to the fact that the static ver-
sion of the problem is easy to solve using standard

23rd Canadian Conference on Computational Geometry, 2011

data structures of computational geometry: build a d-
dimensional version of a segment tree for the set of
boxes, and then query separately for each point to de-
termine whether any box contains it, for a total of
O(n logd n+m logd−1 n) time. This approach, however,
is inefficient when the set of boxes is dynamic, because
each insertion or deletion can affect a large number of
points, requiring Ω(m) recomputation time per update.

During the writing of this paper, we discovered that a
technique of Chan [3] can be used to solve this problem.
In [3], he describes a data structure for maintaining a set
of points and a set of hyperplanes in d-space to answer
queries of the form “does any of the points lie below
the lower envelope of the hyperplanes.” One can use
this data structure in combination with standard range
searching structures and a dynamization technique by
Overmars and van Leeuwen [9] to solve our discrete mea-
sure problem so that point insertions and box updates
require O(log2m+ logd n) and O(m1− 1

d logm+ logd n)
time respectively.1

Compared to this bound, the time complexity of our
data structure is better by a factor of logm. However,
a more important contribution may be the simplicity of
our method and the fact that it solves the problem in
a more direct way, making it more appealing for imple-
mentation. Specifically, our result gives a dynamic data
structure for the discrete measure problem with the fol-
lowing performance: a box can be inserted or deleted in
time O(m1− 1

d + logd n); a point can be inserted in time
O(logm + logd n) and deleted in time O(logm). The
data structure always updates its measure, so a query
takes O(1) time.

The data structure also solves the reporting problem
in output-sensitive time. Specifically, if k is the num-
ber of points in the union of the boxes, then they can
be found in O(k + k log m

k) worst-case time. The same
bound also holds if one wants to report the points not
contained in the union. Finally, we extend our results
to a stochastic version of the problem, in which each
point and each box is associated with an independent
probability of being present. In this case, one can nat-
urally define an expected discrete measure, which is the
expected number of points present that are covered by
the union of the boxes present. Our bounds for the
stochastic case are the same as the deterministic one.

2 Maintaining the Discrete Measure

In the following discussion we assume that all the boxes
in B and points in P have distinct coordinates.2 Be-
fore we describe our dynamic data structure, it is help-

1Reducing box update time is possible at the expense of in-
creasing the cost of point insertions and vice versa.

2This assumption merely simplifies the presentation; one can
use symbolic perturbation to break ties between identical coordi-
nates without affecting the result.

ful to consider a solution for the static problem. Let
B be a set of n boxes and P a set of m points in
d-space. For each point p ∈ P, we define its stab-
bing count, denoted stab(p), as the number of boxes
in B that contain p. The measure of a single point
p, meas(B, {p}), is 1 if stab(p) > 0 and 0 otherwise.
One can easily see that the overall discrete measure
can be written as the sum of point measures; that is,
meas(B,P) =

∑
p∈P meas(B, {p}). The stabbing count

of a point can be efficiently obtained using a multi-level
segment tree [10], which achieves the following perfor-
mance bounds.

Lemma 1 ([10]) The multi-level segment tree repre-
sents a set of n boxes in d-space. The structure can re-
port the stabbing count of any query point in O(logd−1 n)
time. It requires O(n logd−1 n) space and O(n logd n)
preprocessing time for construction.

By building a multi-level segment tree and then
querying it for the stabbing count of each point in
P, we can calculate the measure meas(B,P) for the
static problem in O(n logd n + m logd−1 n) time using
O(n logd−1 n) space.

2.1 Invariants for Stabbing and Measure

The static solution described above loses its appeal in
the dynamic setting because each box insertion or dele-
tion can invalidate the stabbing count of Ω(m) points.
We circumvent this problem by storing the stabbing
counts indirectly, using an idea from anonymous seg-
ment trees [12], so that only a small number of these
indirect values need to be modified after a box update.
We describe the technique in general first, deferring its
specialization for the efficient maintenance of the dis-
crete measure until later.

Consider a balanced tree (not necessarily binary)
whose leaves are in one-to-one correspondence with the
points of P. The point corresponding to a leaf v is de-
noted pv. In order to represent the stabbing counts of
the points, we store a non-negative integer field σ(w)
at each node w of the tree subject to the following sum
invariant : for each leaf v, the sum of σ(a) over all an-
cestors a of v (including v itself) equals stab(pv). By
assigning σ(v) = stab(pv) to each leaf v and σ(w) = 0
to all internal nodes w, we may obtain a trivial assign-
ment with the sum invariant. But, as we will see, the
flexibility afforded by these σ values allows us to update
the stabbing counts of many points by modifying only
a few σ values. As an example, if a box covering all the
points of P were inserted, then incrementing the single
value σ(root) by 1 suffices, where root denotes the root
of the tree.

We will maintain the discrete measure, meas(B,P),
through the σ values. In particular, at each node v, we

CCCG 2011, Toronto ON, August 10–12, 2011

¾r

¾f
¾l · ¾r

¾l 0

¾f + ¾l

¾r ¡ ¾l

Figure 1: The push-up operation on a node with two
children.

store a quantity µ̄(v) representing the number of points
that have a stabbing count of 0, considering only the
information stored in the subtree rooted at v. (The no-
tation µ̄ is meant to suggest that it represents the com-
plement of the measure.) The quantity µ̄(v) is defined
recursively using the σ values as follows:

µ̄(v) =

0 if σ(v) > 0

1 if σ(v) = 0 ∧ v is a leaf∑
w∈child(v) µ̄(w) if σ(v) = 0 ∧

v is an internal node

where child(v) represents the children of a non-leaf
node v. It is easy to show that µ̄(root) is the num-
ber of points in P whose stabbing counts are 0. Conse-
quently, meas(B,P) = m− µ̄(root), and one can report
meas(B,P) in O(1) time.

We add one final constraint on σ values to achieve
uniqueness, which also contributes to the efficiency of
our specialized structure. In particular, we push the
σ values as high up the tree as possible to enforce the
following push-up invariant : at least one child of every
non-leaf node v has a σ value of 0. This specifies σ
uniquely, as shown by the following lemma.

Lemma 2 Let T be a tree representing a set of points
P and their stabbing counts as described above. Then
there exists a unique configuration of σ values satisfying
the sum and the push-up invariants in T .

Proof. We prove only the existence of the desired con-
figuration due to space limitation; the proof of unique-
ness can be found in the full version of the paper. Con-
sider an arbitrary configuration of σ values satisfying
the sum invariant. (For instance, σ(v) = stab(pv) for
each leaf and σ(v) = 0 for each non-leaf.) We then
apply the following push-up operation at each non-leaf
node v to revise its value: increment σ(v) by ∆ and
decrement σ(w) by ∆ for each child w of v, where
∆ = minw∈child(v) σ(w). (See Figure 1). This achieves
the push-up invariant at v while preserving the sum in-
variant in the tree. Repeated applications of the push-
up operation from the leaves to the root produce a con-
figuration of σ values satisfying both invariants.

�

p3

p2

p1
p5

p6

p4

p9

p8

p7 p1 p2 p3 p4 p5 p7p6 p8 p9

Figure 2: A measure tree of 9 points on the plane.

2.2 The Measure Tree and Dynamic Updates

In order to allow efficient insertion and deletion of boxes,
and the corresponding updates of the points’ stabbing
counts, we organize P in a balanced tree that supports
efficient range queries. A k-d tree, where points are
stored at the leaves, allows efficient range queries, but
is inefficient for insertion and deletion of points.3 The
structure we propose, which we call a measure tree, is a
variant of divided k-d trees [11], and allows both efficient
range queries and updates on the set of points. We note
that the tree described in this section has slightly slower
amortized bounds but these can be easily improved to
achieve our main result as explained in Section 2.5.

We describe the measure tree in two dimensions for
simplicity; the extension to d dimensions is conceptu-
ally straightforward, but we defer those details for later.
Given a dynamic set of points P in the plane, we repre-
sent P as a two-level tree. The first level consists of an
upper tree that partitions the points of P into at most
2
√
m subsets along the x-axis, each containing at most

2
√
m points, where m is the current size of P. Each

leaf of the upper tree acts as a root for a lower level
tree that further partitions the corresponding subset of
points using their y-coordinates. These lower trees form
the second level of our tree. Figure 2 shows an example.
Both levels of the tree are organized using 2-3 trees in
which each data element is stored in a single leaf. Con-
sequently, each leaf of the measure tree corresponds to
a single point of P and we can use our measure main-
tenance scheme to store σ and µ̄ values on the nodes.
We now discuss how to perform updates on the measure
tree while preserving the invariants.

Insertion or Deletion of a box B. Let us consider
insertion first. We find a set C of subtrees whose leaves
correspond to the points covered by B. This is a range
query, where we first perform a one-dimensional range
search on the upper tree to locate the subsets of points
that are completely or partially covered by the x-range
of B. Observe that at most two subsets are partially
covered. We then search the lower level trees corre-
sponding to the partially covered subsets to find the
points contained in B. The leaves corresponding to
these points are included in C. For each subset that
is completely covered by the x-range of B, we perform

3There is also no easy way to implement our scheme using
range trees because they contain multiple copies of the points.

23rd Canadian Conference on Computational Geometry, 2011

a one-dimensional range search on the corresponding
lower tree to find a set of maximal subtrees containing
the points that lie in B. These maximal subtrees are
also included in C. It is straightforward to show that
the subtrees in C span the set of points covered by B
and the total cost of the range query is O(

√
m logm).

The insertion of B causes the stabbing count of each
point contained in B to increase by 1. We effect this by
incrementing the σ value of the root of each subtree in
C by 1. This corrects the sum invariant in the tree, but
may invalidate the push-up invariant. We therefore ap-
ply push-ups on the nodes whose σ values are updated.
Since each push-up may introduce a violation of the
push-up invariant at the parent, we continue applying
push-ups until all violations are resolved. Finally, we
recompute µ̄ for all ancestors of nodes whose σ values
changed. This recomputation is also done bottom-up,
since the µ̄ value of a node depends on the µ̄ values of
its descendants. We note that both the push-ups and
the recomputations of µ̄ values can be done as part of
the tree traversal of the range query. It follows that the
total cost of the box insertion is O(

√
m logm) time.

The handling of deletion is similar to insertion, ex-
cept that we decrement the σ value of the root of each
subtree found by the range query. The time complexity
is O(

√
m logm), as for insertion. Decrementing the σ’s

may cause some values to drop below zero, but the push-
up operations eliminate these negative values. In par-
ticular, observe that a push-up at a node v restores not
only the push-up invariant but also the non-negativity
of v’s children. To see that the final value of σ(root)
is non-negative, imagine a root-to-leaf path (as in the
proof of uniqueness for Lemma 2 found in the appendix)
such that σ is zero for all nodes on the path except root .
The path ends at a leaf v such that stab(pv) equals
σ(root), and so it follows that σ(root) is non-negative.

Insertion or Deletion of a point p. When inserting
a point p, we search the upper tree with the x-coordinate
of p to find the lower tree in which p should be inserted,
and then insert p using the standard 2-3 tree insertion
algorithm. This creates a new leaf v with pv = p. We
need to know the stabbing count of p in order to initial-
ize σ(v) correctly. For the moment, let us assume that
we know stab(p)—see Lemma 3—and focus on the up-
date of the tree. In order to preserve the sum invariant,
we set σ(v) to stab(p)− Σ, where Σ is the sum of σ(a)
over all strict ancestors a of v. If σ(v) is less than 0, we
apply push-ups to v and all of its ancestors to push the
negativity to the root, where it is canceled out. The 2-3
tree insertion may split one or more ancestors of v, and
during those splits, the σ values of the resulting nodes
are set to the original node’s σ value, thereby preserving
the sum invariant. After the split, we apply push-ups
on the resulting nodes to re-establish the push-up in-

0¾3

¾2

¾1

¾4 ¾5
¾1+¾2 ¾3+¾4 ¾3+¾5

Figure 3: Push-down in a merge.

variant. Altogether, O(logm) splits and push-ups are
performed, and so the cost of the insertion is O(logm).
The insertion might cause the size of the lower tree to
exceed 2

√
m, but this is discussed in Section 2.3.

When a point p is deleted, we locate the lower tree
containing it and simply delete the leaf corresponding
to p, and restructure the tree to reestablish the bal-
ance of the 2-3 tree. The sum invariant is unaffected
by the deletion, but we may need to apply push-ups
to the ancestors of v to restore the push-up invariant.
The deletion may also cause 2-3 tree merge or redis-
tribution operations, and to preserve the sum invariant
during these operations, we push the σ values of the
participating nodes down to their children (see Figure
3). After the operation, push-ups are applied on these
nodes to restore the push-up invariant. If the lower tree
becomes empty as a result of the deletion, we simply
delete it and apply the same deletion algorithm on the
upper tree. Due to the decrease in the value of m, the
sizes of some upper or lower trees may exceed 2

√
m; we

deal with this in Section 2.3.

2.3 Complexity Analysis

We use two types of operations to ensure that the upper
and the lower trees do not exceed their size thresholds.
First, when a lower tree’s size exceeds 2

√
m, we split

it into two new lower trees of equal size, destroying
the original tree and constructing the new trees from
scratch. During this process, we traverse the original
tree to obtain the stabbing counts of the points and
use those to construct the new trees. This split opera-
tion takes O(

√
m) time since the y-order of the points

is known. Second, we avoid violating the upper tree’s
threshold by periodically rebuilding the entire measure
tree. This reconstruction creates a lower tree for each
set of d

√
m e points along the x-axis (except perhaps

the last one in the sequence, which may be smaller).
Consequently, the size of the upper tree is at most

√
m.

The reconstruction takes O(m logm) time. (It can be
done in O(m) time if we maintain the x- and y-orders
of the points separately.) We determine when to do the
reconstruction as follows. Assume that the most recent
reconstruction of the tree was done when m = m0. We
reconstruct the tree after 1

5m0 point insertions or dele-
tions. This ensures that the upper tree does not exceed
its threshold. The proof is straightforward and left to

CCCG 2011, Toronto ON, August 10–12, 2011

the reader.
Next, we discuss how to initialize the stabbing count

of a point when it is first inserted. We enable this
by maintaining a separate dynamic multi-level segment
tree [5], which provides the following functions dynam-
ically.

Lemma 3 ([5]) The dynamic multi-level segment tree
represents a dynamic set of n boxes in d-space. The
structure uses O(n logd−1 n) space and can report the
stabbing count of any query point in O(logd n) time. It
supports insertion or deletion of boxes in O(logd n) time
apiece.

Putting together these pieces, we obtain our main
result in two dimensions.

Theorem 4 We can maintain the discrete measure in
two dimensions using O(n log n + m) space, with con-
stant time measure queries, O(log2 n+

√
m logm) time

for insertion or deletion of a box, O(log2 n+logm) time
for a point insertion, and O(logm) time for a point dele-
tion time. (The logm term in the bounds is amortized.)

Proof. We use the measure tree along with a two-
dimensional dynamic segment tree. The bound on the
space complexity follows because the measure tree re-
quires linear space and the multi-level segment tree re-
quires O(n log n) space by Lemma 3. The query com-
plexity is obviously constant. The insertion or deletion
of a box takes O(

√
m logm) time for the measure tree

and O(log2 n) time for the segment tree. The cost of
inserting or deleting a point is O(logm) for the mea-
sure tree if there is no reconstruction of a lower tree or
the whole measure tree. Reconstruction of the measure
tree costs O(m logm). We charge the cost of this con-
struction to the Ω(m) point updates that must precede
it, which gives us an amortized cost of O(logm) per up-
date. The reconstruction of a lower tree costs O(

√
m).

One can easily show that Ω(
√
m) point insertions pre-

cede the construction, which gives us an amortized cost
of O(1). Finally, we do a stabbing count query costing
O(log2 n) time when we insert a point. This completes
the proof. �

2.4 Extension to Higher Dimensions

The measure tree naturally extends to higher dimen-
sions, as a d-level tree, with each level partitioning the
points along one of the coordinate axes. The tree at
the top level partitions the set of points into at most
2m1/d subsets, each of which is partitioned into at most
2m1/d subsets by a second level tree. This partitioning
continues through d levels. The measure is maintained
using the σ and µ̄ values, as in two dimensions.

All the update procedures are natural extensions of
their two-dimensional counterparts. The initial tree size

is at most dm1/de at all levels; a tree is split when its size
becomes larger than 2m1/d. Moreover, one can show
that there is a positive constant C such that recon-
structing the tree after each Cm0 point insertions or
deletions guarantees that the size of the upper tree is
bounded by 2m1/d. The following theorem summarizes
the bounds of the d-dimensional structure; its proof is
similar to that of Theorem 4.

Theorem 5 We can maintain the discrete measure in
d dimensions, for d ≥ 2, using O(n logd−1 n + m)
space, with constant time measure queries, O(logd n +

m1− 1
d logm) time for insertion or deletion of a box,

O(logd n + logm) time for insertion of a point, and
O(logm) time for the deletion of a point. (The logm
term in the bounds is amortized.)

2.5 Further Improvements

The amortized bounds of our structure can be converted
to worst case bounds, using a technique called global re-
building [8]. The idea, in brief, is to spread out the
process of subtree reconstruction over time, operating
on a shadow copy of the main data structure and then
swapping in the result when the reconstruction is fin-
ished.

Finally, the term m1− 1
d logm in box update bounds

can be improved to m1− 1
d by using an optimized version

of the measure tree. For instance, in two dimensions,
the partitioning parameter can be tuned to achieve
O(
√
m + log2 n) time for inserting or deleting a box,

by mimicking the construction of [6].

3 Extensions

3.1 Reporting Queries

In some applications, it is useful to report explicitly the
points covered (or uncovered) by the union of boxes.
Our structure can be used to answer such queries in
output-sensitive time as in the following theorem.

Theorem 6 A reporting query can be answered in
O(k + k log m

k) time, where k is the size of the output.

Proof. The proof will appear in the full version of the
paper. �

3.2 Stochastic Discrete Measure

The recent proliferation of data mining applications has
created an urgent need to deal with data uncertainty,
which may arise because the mining algorithms output
probability distributions over an output space, or be-
cause attributes whose values are not explicitly known
are modeled with a discrete set of probabilistic values.

23rd Canadian Conference on Computational Geometry, 2011

This motivates a natural stochastic extension of our dis-
crete measure problem, in which both the underlying set
of points P and the set of boxes B are associated with
independent probabilities. Specifically, each point p in
P occurs with probability πp and each box B in B occurs
with probability πB . The probabilities are independent,
but otherwise can take any real values. A natural prob-
lem in this setting is to compute the expected size of the
discrete measure—that is, how large is meas(B,P) for
a random sample of boxes and points drawn from the
given probability distribution?

Our structure can be easily adapted to this stochastic
problem with the same complexity bounds. The details
will appear in a journal version of the paper.

Theorem 7 The d-dimensional stochastic measure
problem can be solved with a data structure that re-
quires O(n logd−1 n + m) space, O(1) query time,

O(logd n + m1− 1
d) time for insertion or deletion of a

box, O(logd n + logm) time for a point insertion and
O(logm) time for a point deletion.

4 Closing Remarks

We introduced a discrete measure problem, and pre-
sented a data structure that supports dynamic updates
to both the set of points and the set of boxes. The
queries for the current measure take constant time, the
updates to the set of points take polylogarithmic time,
while updates to the set of boxes take time polyloga-
rithmic in the number of boxes and sub-linear in the
number of points. The data structure permits output-
sensitive enumeration of the points covered by the union
of the boxes, and also lends itself to a stochastic setting
in which points and boxes are present with independent,
but arbitrary, probabilities.

Our work leads to a number of research problems.
First, can the update bounds be improved? Second,
is there a trade-off between the update time for boxes
and the update time for points? In particular, can one
achieve polylogarithmic complexity in both n and m?

References

[1] J. L. Bentley. Solutions to Klee’s rectangle problems.
Unpublished manuscript, Dept. of Comp. Sci., CMU,
Pittsburgh PA, 1977.

[2] K. Bringmann and T. Friedrich. Approximating the
volume of unions and intersections of high-dimensional
geometric objects. CGTA, 43:601–610, 2010.

[3] T. Chan. Semi-online maintenance of geometric optima
and measures. In Proc. 13th annual ACM-SIAM Sym-
posium on Discrete algorithms, pages 474–483, 2002.

[4] T. M. Chan. A (slightly) faster algorithm for Klee’s
measure problem. CGTA, 43(3):243–250, 2010.

[5] H. Edelsbrunner. Dynamic data structures for orthog-
onal intersection queries. Report F59, Institut für In-
form., TU Graz, 1980.

[6] K. Kanth and A. Singh. Optimal dynamic range search-
ing in non-replicating index structures. In Proc. ICDT,
page 257. Springer, 1998.

[7] V. Klee. Can the measure of ∪[ai, bi] be computed
in less than O(n lgn) steps? American Mathematical
Monthly, pages 284–285, 1977.

[8] M. Overmars. The design of dynamic data structures.
Springer, 1983.

[9] M. Overmars and J. van Leeuwen. Worst-case opti-
mal insertion and deletion methods for decomposable
searching problems. Information Processing Letters,
12(4):168–173, 1981.

[10] V. K. Vaishnavi. Computing point enclosures. IEEE
Trans. Comput., 31:22–29, January 1982.

[11] M. van Kreveld and M. Overmars. Divided k-d trees.
Algorithmica, 6(1):840–858, 1991.

[12] H. Yıldız, L. Foschini, J. Hershberger, and S. Suri. The
union of probabilistic boxes: Maintaining the volume.
In Proc. 19th Annual European Symposium on Algo-
rithms (ESA), 2011.

