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A Note on Minimum-Segment Drawings of Planar Graphs
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Abstract

A straight-line drawing of a planar graph G is a planar
drawing of G, where each vertex is mapped to a point on
the Euclidean plane and each edge is drawn as a straight
line segment. A segment in a straight-line drawing is
a maximal set of edges that form a straight line seg-
ment. A minimum-segment drawing of G is a straight-
line drawing of G, where the number of segments is the
minimum among all possible straight-line drawings of
G. In this paper we prove that it is NP-complete to
determine whether a plane graph G has a straight-line
drawing with at most k segments, where k ≥ 3. We
also prove that the problem of deciding whether a given
partial drawing of G can be extended to a straight-line
drawing with at most k segments is NP-complete, even
when G is an outerplanar graph. Finally, we investigate
a worst-case lower bound on the number of segments
required by straight-line drawings of arbitrary spanning
trees of a given planar graph.

1 Introduction

A planar graph is a graph that admits a plane embed-
ding. A plane graph is a fixed planar embedding of
a planar graph. A straight-line drawing Γ of a planar
graph G is an embedding of G in the Euclidean plane,
in which each vertex of G is mapped to a distinct point,
each edge of G is a straight line segment, and no two
edges intersect except possibly at a common endpoint.
A segment of Γ is a maximal set of edges in Γ that form
a straight line segment. Γ is called a minimum-segment
drawing of G if the number of segments in Γ is the
minimum possible. Figure 1(a) depicts a plane graph
G, Figure 1(b) depicts its straight-line drawing with 13
segments, and Figure 1(c) shows a minimum-segment
drawing of G with 7 segments.
Dujmović et al. [4] showed that η/2 segments are nec-

essary and sufficient for a straight-line drawing of a tree,
where η is the number of odd degree vertices in the tree.
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Figure 1: (a) A plane graph G. (b) A straight-line
drawing of G. (c) A minimum-segment drawing of G.

They gave optimal bounds on the number of segments
in straight-line drawings of outerplanar graphs, plane
2-trees and plane 3-trees, as well as algorithms for con-
structing straight-line drawings of planar 3-connected
graphs with at most 5n/2 segments, where n is the num-
ber of vertices. Later, Samee et al. [13] gave a linear-
time algorithm for computing minimum-segment draw-
ings of series-parallel graphs, where all the vertices have
degree at most three. Recently, Biswas et al. [2] gave a
linear-time algorithm to obtain minimum-segment con-
vex drawings of 3-connected cubic plane graphs.

A natural question is: what is the time complexity
of computing a minimum-segment drawing of a planar
graph [2]? Dujmović et al. [4] posed the following re-
lated questions: (a) Is there a polynomial-time algo-
rithm to draw a given outerplanar graph with the min-
imum number of segments? (b) What is the minimum
c such that every n-vertex planar graph has a plane
drawing with at most cn+O(1) segments?

In many applications a graph is drawn emphasizing
the drawing of one of its spanning trees, and the other
edges are displayed on demand [5, 8, 11]. Given an ar-
bitrary spanning tree, one may want to draw it with the
minimum number of segments, where the edges that are
not in the spanning tree are to be drawn with polylines
or curves. Given a planar graph G, we investigate a
worst-case lower bound on the number of segments re-
quired by straight-line drawings of arbitrary spanning
trees of G. For this purpose, we introduce a new graph
parameter for planar graphs, which we define as fol-
lows: the spanning-tree segment complexity of a planar
graph G is the minimum positive integer C such that
every spanning tree of G admits a drawing with at most
C segments. Observe that any lower bound on C is a
lower bound on the number of segments required by
straight-line drawings of those spanning trees of G that
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determine the spanning-tree segment complexity of G.
For simplicity, in the rest of the paper we use the term
segment complexity instead of the term spanning-tree
segment complexity.

Main results: Our main results are given below.

(1) Given an arbitrary integer k ≥ 3, it is NP-complete
to decide if a given plane graph has a straight-line
drawing with at most k segments (see Section 3).

(2) It is NP-complete to determine whether a given par-
tial drawing of an outerplanar graph G can be ex-
tended to a straight-line drawing of G with at most
k segments, even when the partial drawing can be
extended to a straight-line drawing of G (see Sec-
tion 4).

(3) In Section 5, we derive lower bounds on segment
complexities of different classes of planar graphs
(see Table 1).

Graph Class Lower Bound on C
Maximal outerplanar n/6

Plane 2-tree n/6
Plane 3-tree (2n− 5)/6

Plane 3-connected n/8
Plane 4-connected n/5

Table 1: Lower Bound on Segment Complexity.
Here n denotes the number of vertices.

2 Preliminaries

Here we introduce some preliminary definitions.
Let G = (V,E) be a connected simple graph with ver-

tex set V and edge set E. Let v be a vertex in G. We de-
note the degree of v by deg(v). G is called k-connected,
k ≥ 1, if the minimum number of vertices, whose re-
moval results in a disconnected graph or a single-vertex
graph, is k. An independent set S is a subset of V , such
that no two vertices of S are adjacent.
A plane graph partitions the plane into connected re-

gions, called faces. The unbounded face is called the
outer face and all other faces are called the inner faces.
The vertices on the boundary of the outer face are called
the outer vertices and all other vertices are called the in-
ner vertices. A maximal planar graph is a planar graph,
where addition of any edge results in a nonplanar graph.
An outerplanar graph is a planar graph that admits

a plane embedding, where all its vertices are on the
outer face. We call such an embedding an outerplanar
embedding. An outerplanar graph G is called a maximal
outerplanar graph if addition of any edge to G results in
a graph that does not admit an outerplanar embedding.

An arrangement of a set L of n lines is the subdivision
of the plane induced by L, where the vertices are the in-
tersection points of the lines. An arrangement A(L) of
L is called simple if no three lines intersect at the same
point and no two lines are parallel. In this paper we con-
sider simple arrangements only. An arrangement graph
G(L) is the graph obtained from A(L) by removing the
infinite half edges (see Figure 2). The following lemma
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Figure 2: (a) An arrangement of 5 lines. (b) Arrange-
ment graph.

gives some properties of arrangement graphs.

Lemma 1 [Bose et al. [3]] Let G be a 2-connected
graph, where each vertex has degree at most four. Then
G is an arrangement graph of a set of l lines if and only
if G admits a straight-line drawing Γ such that:

1. Each segment contains l − 2 edges.

2. All the vertices of degree two and degree three in G
are on the outer face of Γ.

3. Each vertex of degree two is the endpoint of exactly
two segments and each vertex of degree three is the
endpoint of exactly one segment. No segment has an
endpoint that is a vertex of degree four.

4. The number of segments is l = n2+(n3/2), where n2

and n3 are the number of vertices of degree two and
degree three, respectively.

We call Γ an arrangement drawing of G.

3 Minimum-Segment Drawing

In this section we prove that it is NP-complete to decide
whether a plane graph has a straight-line drawing with
a given number of segments. We first need the following
two lemmas.

Lemma 2 Let G be a graph with l(l−1)/2 vertices and
l(l − 2) edges, where l ≥ 3. Let the number of degree
two and degree three vertices be n2 and n3, respectively.
Then G is an arrangement graph if and only if G admits
a straight-line drawing Γ with l segments, where l =
n2 + (n3/2).
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Proof. By Lemma 1, if G is an arrangement graph,
then G admits a drawing with l = n2+(n3/2) segments.
We thus assume that Γ is a straight-line drawing of G

with l segments and then prove that Γ is an arrangement
drawing of G. By Lemma 1, this will imply that G is
an arrangement graph.
We first prove that Γ satisfies Property 1 of Lemma 1.

Suppose for a contradiction that there exists a segment
l′ that contains at least l − 1 edges. Therefore, l′ is
intersected by at least l other straight lines. Thus the
number of segments in Γ is at least l+1, a contradiction.
Thus each segment contains at most l − 2 edges. Since
the number of edges in Γ is l(l − 2) and there are l
segments, therefore each segment contains exactly l− 2
edges, which proves the property.
We next prove that Γ satisfies Property 2 of Lemma 1.

Since each segment of Γ contains l − 2 edges, it is in-
tersected by all the other l − 1 segments in Γ. Thus Γ
contains all pairwise intersections of the l segments and
any extension of the segments beyond their endpoints
will not create any new crossings. We now claim that
the vertices of degree two and three must lie on the outer
face of Γ. Suppose for a contradiction that there exists
an inner vertex v such that deg(v) < 4. Then exten-
sion of the segments at v towards infinity will intersect
the outer face of Γ, which contradicts the fact that Γ
contains all pairwise intersections of the l segments.
Finally, we prove that Γ satisfies Property 3 of

Lemma 1. The number of vertices in G is l(l − 1)/2
and the number of segments in Γ is l. Thus, Γ contains
all pairwise intersections of the l segments and each ver-
tex v in Γ must be an intersection point of two different
segments. Consequently, if deg(v) = 4, then v cannot
be an endpoint of any of those two different segments.
Similarly, if deg(v) = 3, then v is the endpoint of one
of those two different segments. If deg(v) is two, then v
must be the endpoints those two different segments. �

Lemma 3 An arrangement drawing of an arrangement
graph G is a minimum-segment drawing of G.

Proof. Let G be an arrangement graph of l lines. By
Lemma 2, G admits a drawing with at most l segments.
We now prove that any straight-line drawing of G con-
tains at least l segments.
Let w be any vertex of G. Observe that if deg(w) = 2,

then the two neighbors x and y of w are adjacent. Since
wxy form a triangle, in any minimum-segment drawing
of G, xw and yw must lie on different segments. There-
fore, each vertex of degree two will be the endpoint of at
least two segments in any minimum-segment drawing.
If deg(w) = 3, then let x, y and z be the three neigh-

bors of w. Observe that at most two of the edges wx,wy
and wz can lie on the same segment, which implies that
w must be an endpoint of the segment that contains
the remaining edge. Therefore, each vertex of degree

three will be the endpoint of at least one segment in
any minimum-segment drawing.
Let the number of vertices of degree two and degree

three be n2 and n3, respectively. Then any minimum-
segment drawing must contain at least (2n2+n3)/2 seg-
ments. By Lemma 2, (2n2 + n3)/2 = l. �

We are now ready to prove that it is NP-complete
to decide whether a plane graph admits a straight-line
drawing with a given number of segments. We define
the Min-Seg-Draw problem as follows:

INSTANCE : A plane graph G, where the vertices are
uniquely labeled, and an integer k ≥ 3.

QUESTION : Is there a straight-line drawing Γ of G
with at most k segments?

We reduce an NP-hard problem, Arrangement-
Graph-Recognition [3], to Min-Seg-Draw.
INSTANCE : A plane 2-connected graphG with k(k−

1)/2 vertices and k(k−2) edges, where the degree of each
vertex of G is at most four and all the vertices of degree
two and degree three are on the outer face of G.

QUESTION : Is G an arrangement graph?

We now have the following theorem.

Theorem 4 Min-Seg-Draw is NP-Complete.

Proof. Given a drawing Γ, we can certify whether Γ
is a straight-line drawing with at most k segments in
polynomial time. We can also verify in polynomial time
whether Γ is a drawing of G or not as follows: We first
compare the outer face of G with outer face of Γ. If they
are different then Γ is not a drawing ofG. Otherwise, for
each vertex v, we compare the clockwise ordering of the
neighbors of v in Γ with the corresponding ordering of
neighbors of v in G. If for any vertex the two orderings
are different, then Γ is not a drawing of G. In all other
cases Γ is a drawing of G. Thus the problem is in NP.
To prove the problem is NP-hard we reduce

Arrangement-Graph-Recognition to Min-Seg-
Draw. Let G be an instance of Arrangement-
Graph-Recognition. We assign a unique label to
each vertex of G. The resulting labeled graph G′ is
an instance of Min-Seg-Draw.
By Lemma 2 and Lemma 3, G′ is an arrangement

graph if and only if G′ admits a straight-line drawing
with at most k segments. Therefore, the answer to the
instance of Min-Seg-Draw is the answer to the in-
stance of Arrangement-Graph-Recognition. �

4 Minimum-Segment Drawing with Given Partial
Drawing

Drawing a graph extending a given partial drawing is
a well-studied problem [1, 7]. The problem of deciding
whether a given partial drawing can be extended to a
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straight-line drawing of a given planar graph has been
shown to be NP-complete by Patrignani [12]. We show
that given a planar graph G and the drawing of a sub-
graph of G, determining whether the drawing can be
extended to a straight-line drawing of G with at most
k segments is NP-complete, even when G is outerpla-
nar and the partial drawing can be extended to some
straight-line drawing of G. A formal definition of the
decision problem is as follows:

INSTANCE : An outerplanar graph G, a straight-line
drawing Γ′ of a subgraph G′ of G such that Γ′ can be
extended to some straight-line drawing of G, and an
integer k ≥ 1.

QUESTION : Is there a straight-line drawing of G,
which includes Γ′, with at most k segments?

We call this problem Partial-Min-Seg. We prove
NP-hardness by reduction from a strongly NP-complete
problem 3-Partition [6] which is defined as follows.
INSTANCE : A set of 3m nonzero positive integers

S={a1, a2, . . . , a3m} and an integer B > 0, where a1 +
a2+ . . .+a3m = mB and B/4 < ai < B/2, 1 ≤ i ≤ 3m.
QUESTION : Can S be partitioned into m subsets

S1, S2, . . . , Sm such that |S1|=|S2|= . . .=|Sm|=3 and
the sum of the integers in each subset is equal to B?

Observe that the NP-completeness of 3-Partition
holds even when each integer of S is greater than one.
A fan f is a maximal outerplanar graph with n ver-

tices, where a vertex v has degree n− 1. We call v the
apex of f and all the other vertices the path vertices.
We call the edges that are incident to v the ribs of f .
We now have the following theorem.

Theorem 5 Partial-Min-Seg is NP-Complete.

Proof. We can prove that the problem is in NP
as in the proof of Theorem 4. We now create
an instance of Partial-Min-Seg from an instance
B,S={a1, . . . , a3m}, of 3-Partition, where each inte-
ger of S is greater than one.
We construct in polynomial time an outerplanar

graph G as in Figure 3(a), where 3m + 2 fans have a
common apex v. Each fan fi, 1 ≤ i ≤ 3m, contains ex-
actly ai path vertices. There are two more fans f ′ and
f ′′ which contain m+ 1 path vertices and mB +m+ 1
path vertices, respectively. The size of G is polynomial
since 3-Partition is strongly NP-complete. We denote
by G′ the subgraph of G induced by the vertices of f ′

and f ′′. We construct a straight-line outerplanar draw-
ing Γ′ of G′ that satisfies the following (a)–(c).

(a) Let w1, . . . , wm+1 be the path vertices of f ′ ordered
clockwise around v and let u1, u2, . . . , umB+m+1 be
the path vertices of f ′′ ordered clockwise around v.
For each j, 1 ≤ j ≤ m+1, rib (wj , v) of f ′ and rib

(v, ui) of f ′′ form a segment, i=B(j−1)+j. These
segments are shown in bold lines in Figure 3(a).

(b) The edges between path vertices of f ′ and f ′′ are
drawn on two different segments. All the other
edges of f ′′ are drawn as separate segments, which
are shown as thin lines in Figure 3(a).

The gray region in Figure 3(a) shows Γ′. By construc-
tion, the number of segments in Γ′ is k′ = mB+m+3.
We can observe that G admits some straight-line draw-
ing that includes Γ′. We now ask whether G ad-
mits a straight-line drawing, including Γ′, with at most
k = mB+m+3+3m segments. In the following we prove
that such a drawing exists if and only if the given in-
stance of 3-Partition has a positive answer.

We first assume that the 3-Partition we considered
has a positive answer. In other words, S can be parti-
tioned into m subsets S1, S2, . . . , Sm such that each Si,
1 ≤ i ≤ m, contains exactly three integers and the sum
of the integers in Si is equal to B. Since each fan fi,
1 ≤ i ≤ 3m, requires at least one new segment to draw
the edges between path vertices, any extension of Γ′ re-
quires at least k′ +3m = k segments. Let E′ be the set
of ribs of f ′′ that are not drawn on the same segment
as any rib of f ′. To obtain a straight-line drawing of G
with exactly k segments, we need to draw each rib of
each fi on the same segment as one of the ribs in E′.
Let e1 and e2 be any two consecutive ribs of f ′ in Γ′

and let e′1 and e′2 be the ribs of f ′′ that are on the same
segments as e1 and e2, respectively. Then the number
of ribs between e′1 and e′2 is B. Let the integers in any
Si, 1 ≤ i ≤ m, be a, b and c, where a+ b+ c = B. We
place the fans that have a, b and c path vertices inside
the face bounded by the ribs e1 and e2 in Γ′ in such a
way that each rib of a, b and c shares a segment with
one of the ribs of f ′′ between e′1 and e′2. In this way, we
place the three fans with path vertices corresponding to
the integers in Si in the face bounded by the pair of ribs
ei and ei+1, where 1 ≤ i ≤ m. The final drawing Γ of
G that includes Γ′ has exactly k segments.

We now assume that the given instance of 3-
Partition has a negative answer and hence the set
S cannot be partitioned into m subsets as described
above. We prove that in that case G does not have a
drawing with k or fewer segments including Γ′. Recall
that any extension of Γ′ to some straight-line drawing of
G requires at least k segments. Suppose for a contradic-
tion that G has a drawing Γ including Γ′ with exactly
k segments. Then each rib of each fi, 1 ≤ i ≤ 3m,
must be drawn on the same segment as one of the ribs
of E′. Since Γ is a planar drawing of G, each fi must
be placed inside a face bounded by two consecutive ribs
of f ′. Therefore, the fans f1, . . . , f3m are partitioned
into m subsets and the total number of ribs for each set
of fans must be B. Since ai < B/2, no two fans can
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cumulatively have B ribs. Similarly, since B/4 < ai,
four or more fans cumulatively have more than B ribs.
Therefore, each subset must contain exactly three fans.
Hence each subset of fans corresponds to a subset Si of
S that contains three integers whose sum is B. This
gives a solution to the given instance of 3-Partition,
a contradiction. Therefore, G cannot have a drawing
with at most k segments including Γ′. �
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Figure 3: Illustration for the proof of Theorem 5.

5 Segment Complexity of Planar Graphs

In this section we give lower bounds on the segment
complexities of different classes of planar graphs. Recall
that segment complexity of a planar graph G is the min-
imum positive integer C, such that any spanning tree
of G admits a drawing with at most C segments. Duj-
mović et al. [4] proved that if the number of odd degree
vertices in a tree is η, then any straight-line drawing of
the tree requires at least η/2 segments. If a spanning
tree T of G has x leaves, then x ≤ η and any straight-
line drawing of the tree requires at least x/2 segments.
Thus we have the following observation.

Observation 1 Let G be a planar graph with a span-
ning tree T , where the number of leaves is x. Then x/2
is a lower bound on the segment complexity of G.

By Observation 1, we obtain a lower bound on the seg-
ment complexity of a planar graph by finding a spanning
tree with many leaves. A maximum-leaf spanning tree
of a graph G is a spanning tree of G, where the number
of leaves is the maximum possible. It is NP-hard to find
a maximum-leaf spanning tree in a graph G, even when
G is a planar bipartite graph with maximum degree
four [10]. In the following we obtain lower bounds on
segment complexities for maximal outerplanar graphs,
plane 2-trees, plane 3-trees, plane 3-connected graphs
and plane 4-connected graphs.
A graph G with n vertices is a k-tree if G satisfies the

following properties:
(a) If n = k, then G is the complete graph Kn.

(b) If n > k, then G can be constructed from a k-
tree G′ with n− 1 vertices by adding a vertex adjacent
to exactly k vertices of G′, where the induced graph of
these k-vertices is a complete graph.

Every k-tree G = (V,E) admits an ordered partition
π = (V1, V2, ..., Vm) of V that satisfies the following:

(a) V1 contains k vertices inducing a complete graph
and every other partition contains only one vertex.

(b) Let Gk, 1 ≤ k ≤ m, be the subgraph of G induced
by V1∪V2∪...∪Vk. Then Gk, k > 1, is a k-tree obtained
by adding Vk to Gk−1.

Every 2-tree is 3-colorable. The following lemma finds
a spanning tree of a plane 2-tree using graph coloring.

Lemma 6 Let G be a plane 2-tree with n ≥ 3 vertices.
Let S be a set of vertices that are assigned the same
color c in a 3-coloring of G. Then G− S is a tree.

Proof. Let π = (V1, V2, ..., Vm) be an ordered partition
of V . We use induction on m. The case when m = 1
is straightforward since G1 is K2. We thus assume that
for each Gi, 1 ≤ i ≤ m − 1, Gi − Si is a tree. Now
consider Gm = G. Let z be the vertex in Vm and let x
and y be its neighbors. By the definition of plane 2-tree,
x and y are adjacent. We assume that G is colored with
colors c1, c2, c3 such that color(x)=c1, color(y)=c2 and
color(z)=c3. If c=c3, then G−S=Gm−1−Sm−1 is a tree
by induction. If c= c1 or c = c2, then G−S is formed
by connecting vertex z to Gm−1−Sm−1 with exactly one
edge. Since Gm−1−Sm−1 is a tree, G−S is a tree. �

We use Lemma 6 to prove the following theorem.

Theorem 7 Let G be a maximal outerplanar graph
with n ≥ 3 vertices. Then the segment complexity of
G is at least n/6.

Proof. We show that every maximal outerplanar graph
G with n ≥ 3 vertices has a spanning tree T , where the
number of leaves in T is at least n/3. By Observation 1,
this will prove that the segment complexity of G is at
least n/6.
Every maximal outerplanar graph admits a 3-

coloring. Let Si, 1 ≤ i ≤ 3, be a set of vertices that
are assigned color i in a 3-coloring of G. The set with
the maximum cardinality among S1, S2 and S3 will have
at least n/3 vertices. Without loss of generality assume
that the set with the maximum cardinality is S1, that
is, |S1| ≥ n/3. Every outerplanar graph is a plane 2-
tree. Therefore, by Lemma 6, G − S1 is a tree, which
we denote by T ′.
Let v be a vertex in S1. Since S1 is an independent set

and G is connected, there exists an edge (x, v), where x
is a vertex of T ′. Therefore, we can connect v to x to
obtain another tree that contains v as one of its leaves.
By making the vertices of S1 into leaves in T ′, we can
obtain a spanning tree T with at least n/3 leaves. �
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In a similar technique as we used in the proof of The-
orem 7 we can prove the following theorem.

Theorem 8 Let G be a plane 2-tree with n ≥ 3 vertices.
Then the segment complexity of G is at least n/6.

Every plane 3-tree G has a spanning tree with at
least (2n−5)/3 leaves [14]. Furthermore, Kleitman and
West [9] proved that every plane 4-connected graph has
a spanning tree with at least 2n/5 leaves, and every
plane 3-connected graph has a spanning tree with at
least n/4 leaves. We combine these results with Obser-
vation 1 to obtain the following theorem.

Theorem 9 The segment complexities of plane 3-trees,
plane 4-connected graphs and plane 3-connected graphs
are at least (2n− 5)/6, n/8 and n/5, respectively.

6 Conclusion

Among other results, we have proved that it is NP-
complete to decide whether a plane graph G has a
straight-line drawing with k segments. This motivates
finding approximation algorithms for minimum-segment
drawings of different classes of planar graphs.
A minimum-segment drawing becomes more visually

coherent if we minimize the number of distinct lines
that contain the segments of the drawing. We call such
a drawing a minimum-line drawing. Figures 4(a) and
(b) depict two different minimum-segment drawings of
a tree, where the number of lines are 7 and 6, respec-
tively. Since the number of distinct slopes used in both
figures is two, the problem of computing a minimum-line
drawing is different from the problem of minimizing the
number of distinct slopes.

Open Problem: Compute non-trivial upper bounds
on the number of lines required for minimum-line draw-
ings of different classes of planar graphs.

(a) (b)

Figure 4: (a) A minimum-segment drawing. (b) A
minimum-segment drawing, which is also a minimum-
line drawing. Lines are shown in dotted lines.
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