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Abstract

In this paper, we consider the three-dimensional orthog-
onal bin packing problem, which is a generalization of
the well-known bin packing problem. We present new
lower bounds for the problem and demonstrate that
they improve the best previous results.

1 Introduction

The bin packing problem (abbreviated as 1D-BP) is one
of the classic NP-hard combinatorial optimization prob-
lems. Given a set of n items with positive sizes v1, v2,
. . . , vn ≤ B, the objective is to find a packing in bins
of equal capacity B to minimize the number of bins re-
quired. The problem finds obvious practical relevance
in many industrial applications, such as the container
loading problem and the cutting stock problem.

The bin packing problem is strongly NP-hard. Fur-
thermore, it does not admit a (3

2 − ε)-factor approxima-
tion algorithm unless P=NP [10]. On the other hand, it
has been shown that the simple First Fit approach can
obtain a 17

10 -factor approximation algorithm, and the
First Fit Decreasing algorithm can approximate within
an asymptotic 11

9 -factor [11]. Subsequently, Fernandez
de la Vega and Lueker [9] proposed an asymptotic poly-
nomial time approximation scheme (PTAS), and Kar-
markar and Karp [12] presented an improved asymp-
totic fully PTAS. For further results on approximation
algorithms, readers may refer to Coffman, Garey, and
Johnson’s survey [6].

There are many variations of the bin packing problem,
such as the strip packing, square packing, and rectan-
gular box packing problems. In this paper, we consider
the three-dimensional orthogonal bin packing problem
(abbreviated as 3D-BP). Given an instance I of n 3D
rectangular items I1, I2, . . . , In, each item Ii is charac-
terized by its width wi, height hi, depth di, and volume
vi = wihidi. The goal is to determine a non-overlapping
axis-parallel packing in identical 3D rectangular bins
with width W , height H, depth D, and size B = WHD
that minimizes the number of bins required. We assume
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that the orientation of the given items is fixed; that is,
the items cannot be rotated and they are packed with
each side parallel to the corresponding bin side.

A considerable amount of research has been devoted
to the design and analysis of lower bounds for the bin
packing problem [4, 16, 22]. Martello and Toth [19, 20]
and Labbé et al. [14] proposed lower bounds for 1D-
BP, and then extended the concept to multi-dimensional
models [17, 18]. Fekete and Schepers [7, 8] devised
lower bounds based on dual feasible functions (please
see the Appendix) and several related results were pre-
sented [3, 5]. Boschetti [1] combined Martello and
Toth’s work with the above dual feasible functions and
proposed the best lower bound for 3D-BP; i.e., the lower
bound dominates1 all the previous results for 3D-BP.

In the following sections, we first review the previ-
ously proposed lower bounds and integrate the best
of them for 1D-BP and 3D-BP to obtain a new lower
bound for 3D-BP. Then, we propose another novel lower
bound for 3D-BP and show that it dominates all the
previous results.

2 Lower bounds for 1D-BP revisited

An obvious lower bound for 1D-BP, called the continu-
ous lower bound, can be computed as follows:

L0 =
⌈

Σn
i=1vi

B

⌉

It is known that the asymptotic worst-case performance
ratio of the continuous lower bound L0 is 1

2 for 1D-
BP [19]. The lower bound can be easily extended to
3D-BP by considering the volume vi of each item Ii.
Martello et al. [17] showed that, for 3D-BP, the worst-
case performance ratio of L0 is 1

8 .
Subsequently, the bound was improved by Martello

and Toth [20]. Under the new bound denoted by L1, the
set of items is partitioned into two subsets such that one
contains the items whose size is larger than B/2, and
the other contains the remainder. Since each item in
the former subset needs one bin, at least | V (B/2, B] |2

1For two lower bounds L1 and L2 of a minimization problem,
L2 is said to dominate L1, denoted by L1 ≤ L2, if for any in-
stance I, L1(I) ≤ L2(I), where L(I) is the value provided by a
lower bound L for an instance I.

2For convenience, we define V (a, b] = {Ii | a < vi ≤ b} and its
cardinality as | V (a, b] |.
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bins are required. In addition, only items of size vi,
p ≤ vi ≤ B − p are considered, where p is an integer
with 1 ≤ p ≤ B/2, because an item of size p cannot be
placed in the same bin as an item whose size is greater
than B − p. Hence, a valid lower bound L1 can be
computed if we allow the rest of the items (i.e., the items
in V [p,B/2]) to be split. (The other rounding scheme
of L1, denoted by L′1(p), is described in the Appendix.)

Labbé et al. [14] further improved L1, denoted as
L2, by partitioning the set of items into three sub-
sets (V (B/2, B], V (B/3, B/2], and V [p,B/3], where
1 ≤ p ≤ B/3) and applying the First Fit Decreasing
algorithm [6, 11, 13]. The procedure is implemented as
follows. The items in V (B/2, B] are assigned to sep-
arate bins as L1. It may be possible to assign some
of the items in V (B/3, B/2] to the open bins, and at
most one item in V (B/3, B/2] can fit in any of the
open bins. Thus, the open bins are sorted in non-
decreasing order based on their residual space, and the
items in V (B/3, B/2] are assigned in non-decreasing or-
der of their size. The procedure proves that the items
in V (B/2, B] and V (B/3, B/2] can be matched opti-
mally in a pairwise manner. Let K be the subset of
items in V (B/3, B/2] that cannot be matched through
the above procedure. The items in K can be paired, so
at least dK/2e bins are required. It follows that a valid
lower bound L2 can be obtained by allowing the items
in V [p,B/3] to be split as follows.

L2 =| V (B/2, B] | +dK/2e+ max
1≤p≤B/3

{0, L2(p)}, where

L2(p) =

⌈∑
vi∈V [p,B−p] vi

B
− | V (B/2, B − p] | −dK/2e

⌉

The lower bound L2 can be obtained in O(n) time pro-
vided that the sizes of the items are given sorted. Bour-
jolly and Rebetez [2] proved that L1 ≤ L2 (excluding
the rounding scheme L′1(p)), and that the asymptotic
worst-case performance ratio of L2 for 1D-BP is 3

4 . Note
that the primal concept of Labbé et al. cannot be eas-
ily extended to a new lower bound Lm−1 for 1D-BP by
partitioning the set of items into m subsets3, even by
using a brute-force approach.

3 Lower bounds for 3D-BP revisited

For 3D-BP, Boschetti [1] proposed a lower bound, de-
noted by LB , which actually consists of three types of
lower bounds: LB(p, q, r), L′B(p, q, r), and L′′B(p, q, r).
We discuss them in detail below. Note that no domi-

3Scholl et al. [21] showed that the lower bound L2 can be
extended by considering the items in V (B/4, B/3], but the process
is quite complicated and it does not have any obvious extension.

nance relations hold between the three bounds.

LB = max
1≤p≤W/2
1≤q≤H/2
1≤r≤D/2

{LB(p, q, r), L′B(p, q, r), L′′B(p, q, r)}

Boschetti [1] proved that LB is currently the best lower
bound for 3D-BP by applying L1 to LB(p, q, r) and
L′B(p, q, r), denoted by LB,1. In this section, we first re-
view LB,1 by applying L1 to LB(p, q, r) and L′B(p, q, r).
Then, based on the proofs in [2] and [3], which show,
respectively, that L1 ≤ L2 and L′1(p) ≤ fp

2 (the dual
feasible function fp

2 is discussed in the Appendix), we
integrate L2 in [14] and fp

2 in [3] with LB to obtain a
better lower bound for 3D-BP, denoted by LB,2, and
show that LB,1 ≤ LB,2.

The lower bound LB,2(p, q, r). First, we consider the
lower bound LB(p, q, r). Given an item Ii = (wi, hi, di)
for every i, we let IW (W − p,W ] = {Ii | W − p <
wi ≤ W}, IH(H − q,H] = {Ii | H − q < hi ≤ H},
ID(D − r,D] = {Ii | D − r < di ≤ D}, and I[p, q, r] =
{Ii | wi ≥ p, hi ≥ q, di ≥ r}. The objective of
LB(p, q, r) is to compute a valid lower bound for 1D-
BP by using a simple rounding technique when consid-
ering the volume of each item in I[p, q, r]. For exam-
ple, if Ii ∈ IW (W − p,W ] is placed in a bin, then it
will occupy a volume equal to Whidi since no items in
I[p, q, r] can be packed side by side parallel to the width.
Hence, let B = WHD and LB(p, q, r) be computed as
a continuous lower bound by rounding the volume of
each item vi for every i to vi(p, q, r) = wi(p)hi(q)di(r)
such that if Ii ∈ IW (W − p,W ], i.e., wi > W − p, then
wi(p) = W ; otherwise, wi(p) = wi. If Ii ∈ IH(H−q, H],
then hi(q) = H; otherwise, hi(q) = hi. Similarly, if
Ii ∈ ID(D−r,D], then di(r) = D; otherwise, di(r) = di.
Note that it can be proved that this rounding technique
is a dual feasible function [3, 8] (the so-called classic
dual feasible function fp

0 ; please see the Appendix).

LB(p, q, r) =
⌈

Σn
i=1vi(p, q, r)

B

⌉

Since LB(p, q, r) can be computed as a continuous lower
bound for 1D-BP by considering the volume of each
item, L1 can be applied to LB(p, q, r) to obtain a valid
lower bound, denoted by LB,1(p, q, r). By contrast, we
apply L2 and the dual feasible function fp

2 to LB(p, q, r)
separately. We select the maximum of the two refined
lower bounds, denoted by LB,2(p, q, r), and show that
it is a valid lower bound and that it is not smaller than
LB,1(p, q, r).

Lemma 1 LB,2(p, q, r) is a valid lower bound for 3D-
BP, and it dominates LB,1(p, q, r).

Proof. Based on the above rounding scheme, each item
in V (B/2, B] that is rounded, say wi is rounded to W if
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wi > W − p, has two other dimensions larger than H/2
and D/2; otherwise, vi(p, q, r) ≤ B/2. Hence, the items
in V (B/2, B] are assigned to separate bins.

Consider the items in V (B/3, B/2]. Assume we fit
item Ii in V (B/3, B/2] in an open bin, and item Ij

in V (B/2, B] is placed in the same bin. In addition,
suppose the original dimensions of Ij are wj > W −
p, hj > H/2, and dj > D/2. Then, we only need to
determine the height and depth of Ii since only the items
in I[p, q, r] are considered. We have hi > H/3 and di >
D/3 because vi(p, q, r) > B/3. If hi < H/2, it implies
that di > 2D/3; similarly, if di < D/2, it implies that
hi > 2H/3. Thus, at most one item in V (B/3, B/2]
can fit in any of the open bins. The rounded items
in V (B/3, B/2] that can not be matched could not be
matched originally either. Moreover, based on the above
discussion, at most two items in V (B/3, B/2] can be
paired. Hence, it is valid to apply L2 to LB(p, q, r).

Furthermore, LB,2(p, q, r) is a valid lower bound for
3D-BP because fp

2 is a dual feasible function, where 1 ≤
p ≤ B/2 and it can be applied directly to LB(p, q, r).
Because L1 ≤ L2 and L′1(p) ≤ fp

2 , LB,2(p, q, r) domi-
nates LB,1(p, q, r). ¤

The lower bound L′B,2(p, q, r). Regarding the lower
bound L′B(p, q, r), as above, only the items in I[p, q, r]
are considered. Let I(W − p, H − q,D − r) = IW (W −
p,W ]∩IH(H−q, H]∩ID(D−r,D]. Obviously, | I(W−
p,H − q, D − r) | is a valid lower bound and no items
in I[p, q, r] can be placed in the open bins. Next, the
items in I[p, q, r] \ I(W − p,H − q, D − r), denoted by
I ′[p, q, r] are considered. The objective of L′B(p, q, r) is
to consider items in terms of their width, height, and
depth. Let the respective subsets be:
I(p, H − q, D − r) = IH(H − q, H] ∩ ID(D − r, D] ∩ I′[p, q, r];

I(W − p, q, D − r) = IW (W − p, W ] ∩ ID(D − r, D] ∩ I′[p, q, r].

I(W − p, H − q, r) = IW (W − p, W ] ∩ IH(H − q, H] ∩ I′[p, q, r];

Any two items from the different subsets above can
not be matched in the same bin. That is, the items
in I(p,H − q, D − r), I(W − p, q, D − r), and I(W −
p,H − q, r) can only be packed in separate bins. Thus,
the items in I(p,H − q, D− r), I(W − p, q, D− r), and
I(W−p,H−q, r) can be considered separately. For each
dimension, a continuous lower bound of 1D-BP can be
computed similarly. It follows that a valid lower bound
L′B(p, q, r) can be derived as follows:

L′B(p, q, r) =| I(W − p,H − q, D − r) | +

⌈
ΣIi∈I(p,H−q,D−r)wi

W

⌉
+

⌈
ΣIi∈I(W−p,q,D−r)hi

H

⌉
+

⌈
ΣIi∈I(W−p,H−q,r)di

D

⌉

Since a continuous lower bound of 1D-BP can be com-
puted for each dimension, Boschetti [1] applied L1 to
the lower bound L′B(p, q, r), denoted by L′B,1(p, q, r),
in terms of the width, height, and depth. Our lower
bound, denoted as L′B,2(p, q, r), is obtained by applying
L2 and fp

2 to L′B(p, q, r) separately and selecting the
maximum of the two refined lower bounds. We show
that L′B,2(p, q, r) is still a valid lower bound.

Lemma 2 L′B,2(p, q, r) is a valid lower bound for 3D-
BP, and it dominates LB,1(p, q, r).

Proof. Without loss of generality, we consider the
depth of each item in I(W − p,H − q, r) = IW (W −
p, W ]∩IH(H−q, H]∩I ′[p, q, r]. Because r ≤ di < D−r,
the lower bound L2 for 1D-BP can be used directly in
terms of the depth of these items. This is similar to the
width and height of the items in I(p,H − q,D− r) and
I(W − p, q, D − r). Moreover, the dual feasible func-
tion fp

2 can be used directly for each dimension of the
items. Hence, L′B,2(p, q, r) is a valid lower bound for
3D-BP. Because L1 ≤ L2 and L′1(p) ≤ fp

2 , L′B,2(p, q, r)
dominates L′B,1(p, q, r). ¤

The lower bound L′′B,2(p, q, r). The lower bound
L′′B(p, q, r), which is conceptually similar to LB(p, q, r),
can be obtained by using another rounding technique
proposed in [18]. The objective is to pack items into
a bin like small rectangular boxes whose dimensions
are p, q, and r, where 1 ≤ p ≤ W/2, 1 ≤ q ≤
H/2, and 1 ≤ r ≤ D/2. The maximum number of
small rectangular boxes that can be placed in a bin is
bW/pcbH/qcbD/rc. Besides, every item is represented
by small rectangular boxes whose dimensions are p, q,
and r. Thus, for every i, the volume of each item vi, can
be rounded to v′i(p, q, r) = w′i(p)h′i(q)d

′
i(r) such that, if

Ii ∈ IW (W/2,W ], then w′i(p) = bW/pc−b(W −wi)/pc;
otherwise, w′i(p) = bwi/pc. If Ii ∈ IH(H/2,H], then
h′i(q) = bH/qc−b(H−hi)/qc; otherwise, h′i(q) = bhi/qc.
Similarly, if Ii ∈ ID(D/2, D], then d′i(r) = bD/rc −
b(D−di)/rc; otherwise, d′i(r) = bdi/rc. For each dimen-
sion, it can be proved that the rounding technique is a
dual feasible function [3, 8]. More precisely, it is similar
to the dual feasible function fp

2 except that wi = W/2,
hi = H/2, and di = D/2. L′′B(p, q, r) can be computed
as a continuous lower bound as follows:

L′′B(p, q, r) = max
1≤p≤W/2
1≤q≤H/2
1≤r≤D/2

{⌈
Σn

i=1v
′
i(p, q, r)

bW/pcbH/qcbD/rc
⌉}

We let the size of a bin B be equal to bW/pcbH/qcbD/rc
and apply L2 to L′′B(p, q, r), denoted by L′′B,2(p, q, r),
and show that it is also a valid lower bound.

Lemma 3 L′′B,2(p, q, r) is a valid lower bound for 3D-
BP, and it dominates L′′B(p, q, r).
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Proof. When L2 is applied to L′′B(p, q, r), the dimen-
sions of the items in V (B/2, B] are larger than 1

2bW/pc,
1
2bH/qc, and 1

2bD/rc. The width wi of each item Ii with
w′i(p) > 1

2bW/pc is larger than W/2 originally. Simi-
larly, hi > H/2 and di > D/2. Hence, the items in
V (B/2, B] are assigned to separate bins.

Consider each item Ii in V (B/3, B/2]. We have
w′i(p) > 1

3bW/pc, h′i(q) > 1
3bH/qc, and d′i(r) > 1

3bD/rc,
which implies that wi > W/3, hi > H/3, and di > D/3,
because v′i(p, q, r) > B/3. If item Ii can fit in an
open bin, without loss of generality, there is one di-
mension of Ii, say d′i(r), that satisfies the condition
1
2bD/rc > d′i(r) > 1

3bD/rc, which implies that D/2 ≥
di > D/3. Furthermore, if 1

2bD/rc > d′i(r), we have
w′i(p) > 2

3bW/pc and h′i(q) > 2
3bH/qc, which implies

that wi > 2W/3 and hi > 2H/3 because v′i(p, q, r) >
B/3. Thus, at most one item in V (B/3, B/2] can fit
in any of the open bins; and at most two items in
V (B/3, B/2] can be paired.

On the other hand, we claim that if we can not fit Ii in
some open bin, in which Ij in V (B/2, B] is placed, then
Ij was not matched with Ii originally. More precisely, if
d′j(r)+d′i(r) > bD/rc, then dj +di > D. We know that
d′j(r) = bD/rc − b(D− dj)/rc. Suppose that di ≤ D/2.
Then, we have:

⌊
D

r

⌋
−

⌊
D − dj

r

⌋
+

⌊
di

r

⌋
>

⌊
D

r

⌋

⇒
⌊

di

r

⌋
>

⌊
D − dj

r

⌋

⇒di

r
≥

⌊
di

r

⌋
≥

⌊
D − dj

r

⌋
+ 1 >

(
D − dj

r
− 1

)
+ 1

⇒dj + di > D

We also know that dj + di > D if di > D/2; therefore,
L′′B,2(p, q, r) is a valid lower bound. Because L0 ≤ L2,
L′′B,2(p, q, r) dominates L′′B(p, q, r). ¤

Thus, we have the following new lower bound LB,2

for 3D-BP:

LB,2 = max
1≤p≤W/3
1≤q≤H/3
1≤r≤D/3

{LB,2(p, q, r), L′B,2(p, q, r), L′′B,2(p, q, r)}

The theorem follows immediately.

Theorem 4 LB ≤ LB,1 ≤ LB,2.

4 A new lower bound for 3D-BP

In this section, we extend the approach in [14] to 3D-BP
and propose a novel lower bound, denoted by L∗B . First

of all, we define some notations. Let IW (W/2,W ] =
{Ii | W/2 < wi ≤ W}, IH(H/2, H] = {Ii | H/2 <
hi ≤ H}, and ID(D/2, D] = {Ii | D/2 < di ≤ D}.
Similarly, let IW (W/3,W/2] = {Ii | W/3 < wi ≤
W/2}, IH(H/3,H/2] = {Ii | H/3 < hi ≤ H/2}, and
ID(D/3, D/2] = {Ii | D/3 < di ≤ D/2}.
I(W/2, H/2, D/2) = IW (W/2, W ] ∩ IH(H/2, H] ∩ ID(D/2, D];

I(W/3, H/2, D/2) = IH(H/2, H] ∩ ID(D/2, D] ∩ IW (W/3, W/2];

I(W/2, H/3, D/2) = IW (W/2, W ] ∩ ID(D/2, D] ∩ IH(H/3, H/2];

I(W/2, H/2, D/3) = IW (W/2, W ] ∩ IH(H/2, H] ∩ ID(D/3, D/2];

We compute the new lower bound as follows. The
items in I(W/2,H/2, D/2) ∩ V (B/3, B] are assigned
to separate bins because each dimension of the items
in I(W/2, H/2, D/2) is larger than half the size of its
corresponding bin side. It may be possible to assign
some of the items in I(W/3, H/2, D/2) ∩ V (B/3, B],
I(W/2,H/3, D/2)∩V (B/3, B], and I(W/2,H/2, D/3)∩
V (B/3, B] to the open bins; however, at most one item
can fit in any of the open bins because only the items
in V (B/3, B] are considered.

In addition, an item from the above three subsets
can only fit in the open bins if one of its dimensions
is smaller than half the size of the corresponding bin
side; i.e., such an item can be only packed in the open
bins in terms of its width, height, and depth. We then
partition the | I(W/2,H/2, D/2) ∩ V (B/3, B] | open
bins into two subsets so that one subset contains the
open bins whose residual space is smaller than B/2,
and the other contains the remaining bins. Note that
the items in the first subset have at least two dimen-
sions that are more than 2/3 of the size of the corre-
sponding bin sides. Thus, the open bins in that subset
can be divided into three parts based on the smallest
dimension of their included items. Moreover, the bins
in each part are sorted in non-increasing order based
on the corresponding dimension. Therefore, the items
in I(W/3,H/2, D/2) ∩ V (B/3, B], I(W/2,H/3, D/2) ∩
V (B/3, B], and I(W/2,H/2, D/3)∩V (B/3, B] must be
assigned in non-decreasing order separately in terms of
their width, height, and depth. Similar to the proof of
Labbé et al. [14], the procedure proves that the items
are matched optimally in a pairwise manner.

Next, the second subset of open bins are sorted
in non-decreasing order based on their residual space,
and the items that cannot be matched are mixed
and assigned in non-decreasing order according to
their volume. Let KHD ⊆ I(W/3,H/2, D/2) ∩
V (B/3, B] be the subset of items that cannot be
matched through the above process. Similarly, let
KWD ⊆ I(W/2,H/3, D/2) ∩ V (B/3, B] and KWH ⊆
I(W/2,H/2, D/3) ∩ V (B/3, B] be the subsets of items
that cannot be matched either. Note that any two items
from the different subsets above can not be matched in
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the same bin because, without loss of generality, one
dimension of each item Ii, say wi, no larger than W/2
implies that hi > 2H/3 and di > 2D/3. Hence, the
items in KHD, KWD, and KWH can only be paired sep-
arately, and at least dKHD/2e+ dKWD/2e+ dKWH/2e
bins are required.

Then, we consider the remaining items in I(p,H −
q,D−r), I(W−p, q, D−r), and I(W−p,H−q, r). Sim-
ilarly, any two items from the different subsets can not
be matched in the same bin. Thus, the items can be only
packed in terms of each dimension. First, the items are
assigned to the above open bins by allowing the items
to be split. Let I ′(p,H − q, D− r), I ′(W − p, q,D− r),
and I ′(W −p,H−q, r) be the subsets of items that can-
not be packed in the | I(W/2,H/2, D/2) ∩ V (B/3, B] |
+dKHD/2e+ dKWD/2e+ dKWH/2e open bins respec-
tively. We compute a continuous lower bound of 1D-BP
for each dimension. Finally, a valid lower bound can be
obtained by allowing the rest of the items to be split as
follows:

L∗B = | I(W/2,H/2, D/2) ∩ V (B/3, B] | + (1)
⌈

KHD

2

⌉
+

⌈
KWD

2

⌉
+

⌈
KWH

2

⌉
+ (2)

⌈
ΣIi∈I′(p,H−q,D−r)wi

W

⌉
+ (3)

⌈
ΣIi∈I′(W−p,q,D−r)hi

H

⌉
+ (4)

⌈
ΣIi∈I′(W−p,H−q,r)di

D

⌉
+ (5)

max
1≤p≤W/3
1≤q≤H/3
1≤r≤D/3

{0, L∗B(p, q, r)}, where L∗B(p, q, r) =

⌈∑
Ii∈I′[p,q,r] vi

B
− α + | I(W − p,H − q, D − r) |

⌉

and α = (1) + (2) + (3) + (4) + (5).

We use the rounding scheme, i.e., the dual feasible
function fp

0 for each dimension of every item Ii, to
derive a rounded volume vi(p, q, r) = wi(p)hi(q)di(r).
Next, we show that 1) L∗B is a valid lower bound; and
2) after applying the rounding scheme fp

0 , L∗B dominates
max1≤p≤W/3,1≤q≤H/3,1≤r≤D/3{LB,2(p, q, r), L′B,2(p, q, r)}.

Lemma 5 L∗B is a valid lower bound.

Proof. The dimensions of each item in
I(W/2,H/2, D/2) are more than half the size of
the corresponding bin sides even if the item is rounded.
Hence, the items in I(W/2, H/2, D/2) are assigned to
separate bins.

Consider the items in I(W/3,H/2, D/2)∩V (B/3, B],
I(W/2,H/3, D/2)∩V (B/3, B], and I(W/2,H/2, D/3)∩
V (B/3, B]. Without loss of generality, say we fit item

Ii ∈ I(W/3,H/2, D/2) ∩ V (B/3, B] into an open bin,
and item Ij in I(W/2,H/2, D/2)∩ V (B/3, B] is placed
in the same bin. Ii may fit with respect to the width
because hi(q) > H/2 and di(r) > D/2 imply that hi >
H/2 and di > D/2. Besides, wi = wi(p) because W/2 ≥
wi > W/3. W/2 ≥ wi also implies that hi(q) > 2H/3
and di(r) > 2D/3 because vi(p, q, r) > B/3. Thus, if
hi is rounded, then hi > H − q; otherwise, hi > 2H/3.
Similarly, di > min{D − r, 2D/3}. Because only the
items in I[p, q, r] are considered, at most one item in
the above three subsets (every item Ik in the subsets
has wk > W/3, hk > H/3, and dk > D/3) can fit in any
of the open bins.

On the other hand, since Ii may fit (in terms of the
width) into the bin in which Ij is placed, we need to
consider if wj is rounded (because wi = wi(p)). We
know that the rounded wj that can not be matched
was not matched originally either. In addition, based
on the above discussion, for item Ii ∈ KHD, W/2 ≥
wi > W/3 implies that hi > min{H − q, 2H/3} and
di > min{D − r, 2D/3}. Thus, two items from any two
of KHD, KWD, and KWH cannot be matched in the
same bin; and at most two items from each subset can
be paired.

Finally, similar to the lower bound L′B(p, q, r), we
consider the remaining items in I(W − p,H − q, r),
I(p,H − q,D − r), and I(W − p, q, D − r). The items
are first assigned to the above open bins by allowing the
items to be split. Then, we compute a continuous lower
bound of 1D-BP for each dimension of the remainder.
Thus, fp

0 can be applied to L∗B , and L∗B becomes a valid
lower bound for 3D-BP by allowing the rest of the items
to be split. ¤

Lemma 6 For each 1 ≤ p ≤ W/3, 1 ≤ q ≤ H/3, 1 ≤
r ≤ D/3, L∗B dominates LB,2(p, q, r) and L′B,2(p, q, r).

Proof. First we consider LB,2(p, q, r). Since fp
0 is ap-

plied to both LB,2(p, q, r) and our new lower bound
L∗B , we claim that the new partition scheme is bet-
ter than Labbé et al.’s method. For the first part,
we have I(W/2,H/2, D/2)∩ V (B/3, B] open bins com-
pared to V (B/2, B] bins. Every item Ik ∈ V (B/2, B]
has wk(p) > W/2, hk(q) > H/2, and dk(r) > D/2;
thus, Ik ∈ I(W/2,H/2, D/2) ∩ V (B/3, B]. We have
V (B/2, B] ⊆ I(W/2,H/2, D/2) ∩ V (B/3, B].

For the second part, each item Ik ∈ V (B/3, B]
has wk(p) > W/3, hk(q) > H/3, and dk(r) >
D/3. Besides, if one of the item’s dimensions,
say the width wk(p) ≤ W/2, it implies that
hi(q) > 2H/3 and di(r) > 2D/3. We have
V (B/3, B] ⊆ I(W/2,H/2, D/2) ∪ I(W/3,H/2, D/2) ∪
I(W/2,H/3, D/2) ∪ I(W/2,H/2, D/3). Therefore,
| V (B/2, B] | +dK/2e ≤ | I(W/2, H/2, D/2) ∩
V (B/3, B] | +dKWH/2e + dKHD/2e + dKWD/2e. It
is obvious that the remainder of LB,2(p, q, r) is no
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larger than the remainder of L∗B . Thus, L∗B dominates
LB,2(p, q, r).

Consider the lower bound L′B,2(p, q, r). For the first
part, since fp

0 is applied to L∗B , we have I(W − p,H −
q, D − r) ⊆ I(W/2,H/2, D/2) ∩ V (B/3, B]. Regarding
the second part, without loss of generality, say I(W −
p,H−q, r) is considered in L′B,2(p, q, r). We explore the
possibility of placing the items in I(W/2,H/2, D/2) ∪
I(W/2, H/2, D/3)∪I(W −p,H−q, r) for the new lower
bound L∗B . Clearly, by considering each dimension, L∗B
dominates L′B,2(p, q, r). ¤

Finally, similar to L′′B,2(p, q, r), we apply the dual fea-
sible function fp

2 to each dimension of all the items
instead. Then, we compute the summation of the
rounded volume of each item, and a continuous lower
bound can be obtained by letting the size of a bin
B = bW/pcbH/qcbD/rc. It is also valid to apply L2 to
this continuous lower bound, denoted by L∗DF (p, q, r).
Then, we have:

L∗B,DF = max{L∗B , L∗DF (p, q, r)}
Because L′′B,2(p, q, r) ≤ L∗DF (p, q, r), the next theorem
follows immediately.

Theorem 7 LB,2 ≤ L∗B,DF .

5 Concluding remarks

We have considered the 3D-BP problem and proposed
two new lower bounds LB,2 and L∗B,DF . In addition,
we have demonstrated that the lower bounds improve
the best previous results, and that L∗B,DF dominates
all the other lower bounds for 3D-BP proposed in the
literature. In our future research, we will continue to
improve the non-oriented model, which allows items to
be rotated.
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