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A Randomly Embedded Random Graph is Not a Spanner
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Abstract

Select n points uniformly at random from a unit square,
and then form a random graph on these points by
adding an edge joining each pair independently with
probability p. We show that for every fixed ε > 0, if
p < 1 − ε, then with probability approaching 1 as n
becomes large, the resulting embedded graph has un-
bounded stretch factor.

1 Introduction

Select n points uniformly at random from a unit square,
and then form a random graph G on these points by
joining each pair independently with probability p =
p(n). This is not a “random geometric graph” in the
usual sense of that term, because points are connected
without regard to their geometric distance. For every
two points u and v, let d(u, v) denote their Euclidean
distance. Make G weighted by putting weight d(u, v) on
every edge uv. For two vertices u and v, let dG(u, v) de-
note their shortest-path distance on (weighted) G, and
let dG(u, v) = ∞ if there is no (u, v)-path in G. The
stretch factor of G is defined as

max
dG(u, v)

d(u, v)
,

where the maximum is taken over all vertices u, v. In the
open problem session of CCCG 2009 [1], O’Rourke asked
if for p > lnn/n, the resulting graph has a bounded
stretch factor. We give a negative answer to this ques-
tion. More precisely, we show that for every fixed ε > 0,
if p < 1−ε, then with probability approaching 1 as n be-
comes large, the resulting graph has unbounded stretch
factor.

2 Proof of the Main Result

Assume that n points are chosen independently and uni-
formly from a unit square, where n is sufficiently large.
Let p < 1− ε for some fixed ε > 0, and build the graph
G as in the introduction. In the following, with high
probability means with probability 1 − o(1), where the
asymptotics is with respect to n. Fix a positive λ. We
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will show that with high probability the graph G has
stretch factor larger than λ.

Let m be a positive integer satisfying m2 ≤ n/2 <
2m2. Partition the unit square into m2 squares of side
1
m by drawing m − 1 equally spaced vertical lines and
m − 1 equally spaced horizontal lines. We will call the
generated squares of side 1

m the small squares. Let K
be the number of small squares that contain exactly
two points. The probability that some point lies on
the boundary of some small square is zero, and we will
assume that this does not happen.

Lemma 1 With high probability K ≥ e−8n.

Proof. Number the small squares arbitrarily from 1 to
m2. We have

K = K1 +K2 + · · ·+Km2 ,

where Ki is the indicator variable for the event that the
i-th small square contains exactly two points. Hence
EKi is the probability of this event. Let 1 ≤ i ≤ m2 be
arbitrary. The probability that a random point lies in
the i-th small square is 1/m2. So the probability that
exactly two of the n random points are in this square is

EKi =

(
n(n− 1)

2

)(
1

m2

)2(
1− 1

m2

)n−2

.

By the choice of m, we have m4 ≤ n2/4 and m2 ≥ n/4.
These bounds together with the fact that for large n,
exp(−5/n) ≤ 1− 4/n give

EKi ≥
(
n2

4

)(
4

n2

)(
1− 4

n

)n

≥ e−5.

Thus by linearity of expectation,

EK = EK1 + EK2 + · · ·+ EKm2 ≥ m2e−5 ≥ ne−7.

Now, we estimate Var(K) and show that Var(K) =
O(n). Let i, j be arbitrary, with 1 ≤ i < j ≤ m2.
The probability that both the i-th square and the j-th
square contain exactly two points is

E[KiKj ] =

(
n

2

)(
n− 2

2

)(
1

m2

)4(
1− 2

m2

)n−4

,

and we have

EKiEKj = (EKi)
2 =

(
n

2

)2(
1

m2

)4(
1− 1

m2

)2(n−2)

.
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Thus,

Cov(Ki,Kj) = E[KiKj ]− EKiEKj

≤
(
n

2

)2(
1

m2

)4
[(

1− 2

m2

)n−4

−
(

1− 1

m2

)2(n−2)
]
.

Moreover, since m2 = Θ(n),(
1− 2

m2

)n−4

−
(

1− 1

m2

)2(n−2)

= exp

(
−2(n− 4)

m2

)
− exp

(
−2n+ 4

m2

)
+O(1/m2)

= exp

(
− 2n

m2

)(
e8/m2

− e4/m2
)

+O(1/m2)

= eΘ(1)O(1/m2) +O(1/m2) = O(1/m2).

Thus,

Cov(Ki,Kj)

≤
(
n

2

)2(
1

m2

)4
[(

1− 2

m2

)n−4

−
(

1− 1

m2

)2(n−2)
]

= O(n4)O(1/m8)O(1/m2) = O(1/m2).

Consequently, since Var(Ki) = EKi(1− EKi) ≤ 1/4,

Var(K) =
∑
i

Var(Ki) +
∑
i6=j

Cov(Ki,Kj)

≤ m2/4 + 2

(
m2

2

)
O(1/m2) = O(m2) = O(n).

Let t =
(
e−7 − e−8

)
n. Then Chebyshev’s inequality

gives

Pr
[
K < ne−8

]
≤ Pr [|K − EK| ≥ t]

≤ Var(K)

t2
= o(1).

Thus, with high probability, K ≥ e−8n. �

A small square S with exactly two points u and v is
called nice if the following statements are true.

1. Points u and v lie in the circle which is co-centric
with S and has radius r = (7mλ)−1.

2. The points u and v are nonadjacent in graph G.

We claim that the existence of a nice square S implies
that the stretch factor of G is larger than λ. In fact,
the (weighted) distance between u and v in G is at least

1
2m − r, since any (u, v)-path in G should go out of S
at the very first step. However, the Euclidean distance
between u and v is at most 2r, and we have(

1

2m
− r
)
> λ(2r).

Let A be the (random) set of small squares that con-
tain exactly 2 points. Let S ∈ A with points u and v
inside it. Then for S to be nice, u and v should lie in
the co-centric circle with radius r, and u and v should
be nonadjacent in G. The probability of the former is
(πr2m2)2 = (π/7λ)2, and the probability of the latter
is 1−p. These two events are independent, so the prob-
ability that S is not nice is 1− (π/7λ)2(1− p).

Let A0 be a fixed set of small squares, and assume
that we condition on A being equal to A0. Then the
events happening inside each square of A0 are indepen-
dent of the others. In particular, the events

{S is nice : S ∈ A0}

are mutually independent, hence the probability that no
nice square exists is equal to[

1− (π/7λ)2(1− p)
]|A0|

.

Therefore, conditioned on the event |A| ≥ e−8n, the
probability that no nice square exists is at most[

1− (π/7λ)2(1− p)
]e−8n

,

which, since p < 1− ε, approaches 0 as n becomes large.
By Lemma 1, with high probability the size of A is at
least e−8n, i.e. the event |A| ≥ e−8n happens with prob-
ability 1−o(1). Thus with high probability a nice square
exists and the stretch factor is larger than λ.
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