
CCCG 2011, Toronto ON, August 10–12, 2011

Finding The Maximum Density Axes Parallel Regions for Weighted Point
Sets

Ananda Swarup Das ∗ Prosenjit Gupta † Kannan Srinathan ‡ Kishore Kothapalli §

Abstract

In this work we study the problem of finding axes-
parallel regions of maximum density for weighted point
sets in IR2 and IR3. The 2-d variant is motivated by
applications in thermal analysis of VLSI chips.

1 Introduction

We are given a set of n weighted points in IR2 (respec-
tively in IR3). Our goal is to find the highest density
axes parallel rectangle in IR2 (in IR3 we find the highest
density axes parallel 3-dimensional box) where density
of a region is defined as the sum of weights per unit
area (respectively per unit volume). The problem for
finding the highest density axes parallel rectangle for
IR2 was introduced by Majumder et al. in [1] and has
applications in thermal analysis of VLSI chip.

Preliminaries and Problems: Let us first define the
term density formally. The definition that we are pro-
viding here has been mentioned in [1].

Definition 1 Let F be a rectangular floor containing
a set S of n points such that no two points lie on the
same horizontal or vertical line. Each point pi ∈ S is
associated with a positive real weight wi. The density of
an axes parallel region R with area A(R) is defined as∑

pi∈R
wi

A(R) .

It should be mentioned that in case of unweighted points
(or when points are of equal weight), the density is
|S∩R|
A(R) . Next, we introduce the main problem that we

study in this work.

Problem 1.1 Given a set S of n points in a plane such
that each point has a positive weight associated with it,
find the cluster of k ≥ 2 points in S such that the mini-
mum area axes parallel rectangle covering them attains
the highest density.

∗International Institute of Information Technology , Hyder-
abad, India, anandaswarup@gmail.com
†Heritage Institute of Technology, Kolkata, India ,

prosenjit gupta@acm.org
‡International Institute of Information Technology , Hyder-

abad, India, srinathan@iiit.ac.in
§International Institute of Information Technology , Hyder-

abad, India, kkishore@iiit.ac.in

Our Contribution:
In this work we first show that if the coordinates of
the n points are integers in [0, U] × [0, U], and the
points have distinct positive weights w(p), then finding
the highest density axes parallel rectangle can be done
in O(n log n logU) time using O(n log2 n) storage.
We then present another data structure which solves

Problem 1.1 in O(n log n logU) time using O(n log2 n
log logn)

storage. We finally discuss how to find the highest
density axes parallel 3-dimensional box provided the
coordinates of the n weighted points are integers in
[0, U]× [0, U]× [0, U].

Special note: We assume that all the coordinates of
the points are distinct. This particular assumption of
distinctness is important for the correctness of the so-
lution as because, if there are two points whose x co-
ordinates (or y coordinates) are the same, the area of
the axes parallel rectangle induced by them is zero and
hence the corresponding density will be ∞.

2 Solution

In [1], Majumder et al. proved the following,

Lemma 1 Let each point pi ∈ S be associated with a
positive weight wi and there exists a cluster S′ ⊆ S
of k ≥ 2 points such that no two of them lie in the
same horizontal (vertical) line. Then there exists a pair
pi, pj ∈ S′ such that the density of the smallest area axes
parallel rectangle containing (pi, pj) is greater than the
density of the axes parallel rectangle containing S′.

In short, the Lemma 1 says the following: let the clus-
ter S′ contains k > 2 points and let the density D′ of
S′ is the sum of the weights of the k points in S′ di-
vided by the smallest area of the axes parallel rectangle
bounding all the points of S′. Also assume that S′ is
the cluster of highest density among all possible clus-
ters for the points of S. Then as a contradiction, it can
be shown that there exist two points pi, pj ∈ S′ such
that the density of the smallest area axes parallel rect-
angle containing (pi, pj) is greater than the density of
the axes parallel rectangle containing S′. It therefore
means that the maximum density occurs for a cluster
C ⊆ S containing only two points. Though Majumder
et al. proved the Lemma 1, they solved the unweighted

23rd Canadian Conference on Computational Geometry, 2011

version of the problem in which case, the problem gets
reduced to finding the smallest area axes parallel rect-
angle enclosing two points of S as diagonally opposite
corners. No efficient solution is however known for the
problem with a weighted point set. In this work, we
show a simple “divide and conquer” technique for the
problem assuming that the coordinates of the weighted
points are integers in [0, U]× [0, U].

p
adv

p
t

(b)

p
1

p =(p (x), p
t t t

(y))

p =(p p
2 2

(x),
2

(y))

p =(p (x), p
1 1 1 (y))

(a)

p
y_mid

Figure 1: (a) The y coordinate of the end point of
the dotted semi infinite horizontal segment is py mid =
p1(y)+pt(y)

2 . (b) The rectangle enclosing the points p1, pt
as diagonally opposite corner points cannot be a candi-
date for highest density rectangle as it contains the point
padv in it.

2.1 Our Algorithm

1. Consider a point p1 ∈ S. Let p1 =
(p1(x), p1(y)). Consider the northeast quadrant
NE(p) = (P1(x),∞]× (P1(y),∞].

2. Let the weight of p1 be w(p1). Create a query box
q = [p1(x),∞)× [p1(y),∞)× [w(p1),∞).

3. Find the point with the smallest x coordinate in
the query box q. Let this point be denoted by pt =
(pt(x), pt(y)).

4. Consider the axes parallel rectangle R1,t enclosing
the points p1, pt as the diagonally opposite cor-
ners. Check if the rectangle R1,t contains any point
padv ∈ S. See Figure 1 (b).

(a) If R1,t ∩ S = ∅, then R1,t is a candidate for
being the highest density rectangle.

(b) Else, as per Lemma 1, R1,t cannot be the high-
est density rectangle.

5. Repeat the above steps but this time with the

query box q = [p1(x),∞) × [p1(y), bp1(y)+pt(y)2 c] ×
[w(p1),∞). The reason for this step is explained in
Lemma 2.

6. Stop the algorithm if bp1(y)+pt(y)2 c = p1(y).

7. Follow a similar procedure for the southeast quad-
rant SE(p1), southwest quadrant SW (p1), and
northwest quadrant NW (p1) for the point p1.

8. Repeat the steps (1) to (7) for all the points in S.

Consider the query box q = [p1(x),∞)× [p1(y),∞)×
[w(p1),∞) mentioned in the step (2) of the algorithm
and let SNE(p1) be the set of all the points in S lying
in the northeast quadrant of p1 such that these points
have their respective weight greater than the weight of
p1. Then we have the following lemma.

Lemma 2 Let pt, p2 ∈ SNE(p1) be two points such that
(a) pt = (pt(x), pt(y)) has the smallest x coordinate
among all points in SNE(p1) and (b) the axes parallel
rectangle R1,2 enclosing p1 and p2 as diagonally oppo-
site corners has the highest density in SNE(p1). Then

the y coordinate of p2 must be less than p1(y)+pt(y)
2 .

Proof: See Figure 1 (a). Since p2(x) > pt(x) >
p1(x), p2(x) − pt(x) < p2(x) − p1(x). By Lemma 1,
p2(y) < pt(y) or else the rectangle R1,2 will also con-
tain the point pt and hence cannot have highest den-

sity. If p2(y) ∈ [p1(y)+pt(y)2 , pt(y)], then pt(y)− p2(y) ≤
p2(y) − p1(y). Therefore the area of the rectangle
Rt,2, the one enclosing pt, p2 as the diagonally oppo-
site points will have its area A(Rt,2) < A(R1,2). Since

w(pt) > w(p1), w(pt)+w(p2)
A(Rt,2)

> w(P1)+w(P2)
A(R1,2)

, a contradic-

tion to the fact that R1,2 has the highest density.�

We therefore conclude the section by stating the follow-
ing lemma.

Lemma 3 When the coordinates of the points are in-
tegers and in the range of [0, U] × [0, U], the maxi-
mum number of candidate rectangles we generate for
any point p1 is O(logU). The total number of candi-
date rectangles thus generated is O(n logU).

3 The Choice of Data Structures

As evident from our algorithm in Section 2.1, we need
two particular data structures namely (a) a 2-d range
aggregate data structure D such that given a query rect-
angle q we can efficiently decide if q∩D = ∅ or not, and
(b) a 3-d range successor data structure for efficient ex-
ecution of our algorithm. We skip the discussion on 2-d
range queries as they are very well studied [8] and focus
on 3-d range successor problem. Formally the problem
can be defined as follows.

Problem 3.1 Given a set S of n points in IR3 prepro-
cess them into a data structure such that given an axes
parallel d-box q for d = 3, one can efficiently report the
point with the smallest x coordinate in q ∩ S.

CCCG 2011, Toronto ON, August 10–12, 2011

The above problem has been studied in [3, 7].
The data structure presented in [7] takes ex-
pected O(n log n log log n) preprocessing time, oc-
cupies O(n log2 n) space and can be queried in
O(log n log log n) time. The data structure presented
in [3] can be built in O(n1+ε) time, occupies O(n1+ε)
space and can be queried in O(1) time. For any data
structure for the range successor problem let P (n) be
the preprocessing time and let Q(n) be the query time.
Since we may need to answer O(n logU) range successor
queries in the worst case for solving Problem 1.1, the
total time required to answer range successor queries
is R(n) = P (n) + O(n logU)Q(n). Hence we propose
a data structure RSQ to solve the 3-dimensional range
successor problem so that the R(n) value is smaller than
that obtained by using the solutions from [3] and [7].
RSQ is a variant of range aggregate tree with fractional
cascading [8] and is also a variant of [4].

3.1 The Preprocessing Algorithm

1. Let x1, x2, . . . , xn be a sorted list of points on the
real line, being the x-projections of the points in S.
Consider the elementary intervals created by the
partitioning of the real line induced by these points.
Construct a balanced binary tree Tx, associating
the above elementary intervals with its leaves.

2. To each internal node µ, assign an interval int(µ)
which is union of the elementary intervals of the
points associated with the leaf nodes of the subtree
rooted at µ.

3. At each internal node µ ∈ Tx maintain an array Aµ
which stores the y coordinates of the points present
in the leaf nodes of the subtree rooted at µ.

4. Also maintain a range minima data structure
RMAµ (see [6]) such that given two indices i, j
of Aµ, we can return the maximum weight among
the points whose y coordinates are stored between
Aµ[i] to Aµ[j].

5. Let w and v be the two children of µ. Since
Aµ = Aw ∪Av, each index i of Aµ has two pointers
one pointing to the smallest value in Aw which is
greater than equal to Aµ[i] and the other pointing
to the smallest value in Av greater than equal to
Aµ[i]. Similarly each index i of Aµ has two point-
ers one pointing to the largest value in Aw which
is smaller than equal to Aµ[i] and the other point-
ing to the largest value in Av smaller than equal to
Aµ[i].

6. Now, at the node µ, construct a height balanced
binary search tree Tµ,y on the points of Aµ.

7. At each node φ ∈ Tµ,y, store a sorted array Wφ

which stores the weights of the points whose y co-
ordinates are stored in the leaf nodes of subtree
rooted at φ.

8. Maintain a range minima data structure RM ′φ such
that given two indices i, j of Wφ, we can return
the minimum x coordinate among the points stored
between Wφ[i] to Wφ[j].

Lemma 4 The data structure RSQ for range successor
queries can be built in O(n log2 n) time and occupies
O(n log2 n) space.

3.2 The Query Algorithm

Let our query be q = [x1,∞) × [y1, y2] × [wt,∞). We
wish to find out the the point p ∈ S with the smallest
x coordinate and fitting inside q.

1

2

3

leaf

Figure 2: The nodes marked black are the ones to which
the interval [x1,∞) is allocated

1. Find the leaf node leaf ∈ Tx such that it contains
the value x1. Trace the path π from the node leaf
to the root node of the tree Tx.

2. For any node v which is a right sibling of any node
u on the path π, its interval int(v) ⊂ [x1,∞). Allo-
cate the semi-infinite interval [x1,∞) to the nodes
v. See Figure 2. The nodes marked black are the
ones to which the interval [x1,∞) is allocated. In
general, the interval [x1,∞) will be allocated to
O(log n) canonical nodes of Tx. Since [x1,∞) is a
semi-infinite interval, it will be allocated to at most
one node at each level of the tree. For l ∈ O(log n),
let us number these nodes as v1, . . . , vl, starting
from the leaf level of the tree Tx. See Figure 2.

3. Search the array Aroot to find the indices i and j
such that y1 ≤ Aroot[i] < Aroot[j] ≤ y2. Then find
the smallest value greater than y1 and the largest
value smaller than y2 in the all the arrays starting
from A1, . . . , Al. This can be done by chasing the
pointers starting from Aroot.

23rd Canadian Conference on Computational Geometry, 2011

4. As v1 is a leaf node, |Av1 | = 1. Check if the y co-
ordinate stored in the node marked 1 is in between
y1 and y2. If so, check if the weight of the point is
greater than wt. If so, we have our desired point in
the node 1.

5. Else we move to the node marked 2. Let i′, j′ be
the indices such that y1 ≤ A2[i′] < y2 ≤ A2[j′].

6. Using Range Minima data structure RMA2
, find

the maximum weight w′ among the points stored
in between A2[i′] and A2[j′].

7. Let w′ > wt. It means we have our desired point
at the node 2. We move to the node 2.

• Consider the data structure Tµ,y for µ = 2,
created in steps (6) to (8) of the preprocess-
ing step. By repeating steps similar to (4) to
(7) of the query algorithm on the tree Tµ,y , on
required auxiliary arrays Wφ and on required
range minima data structures RM ′φ, we can
find out the point with the smallest x coordi-
nate present in S ∩ q.

• Return the point discovered in the previous
step

8. On the other hand, if w′ < wt, we move to the next
node that we have marked as node 3.

9. For any query q, the above steps continue until

• we discover the point with the smallest x co-
ordinate in q or

• we have visited all the l nodes and have failed
to find the point p ∈ S with the smallest x
coordinate and fitting in q .

Lemma 5 The data structure RSQ supports 3-
dimensional range successor queries in O(log n) time.

Proof: Finding the leaf node leaf ∈ Tx needs O(log n)
time. Next, searching the indices i, j such that y1 ≤
Aroot[i] < Aroot[j] ≤ y2, needs another O(log n) time.
Once the indices i, j of the root node are found, find-
ing the respective indices in all the arrays of the nodes
marked black in Figure 2 needs O(log n) time. Next,
we check if the point in the node marked 1 fits our re-
quirement. If so, our job is done in O(log n) time. Else,
we move to the node marked 2 and find the maximum
weight among the points which are stored between A2[i′]
to A2[j′] where y1 ≤ A2[i′] < A2[j′] ≤ y2. This needs
O(1) time using the range minima data structure. If
we find the maximum weight to be greater than wt, we
restrict our searching only at node 2. Next, we repeat
similar searches at the tree T2,y. This needs another
O(log n) time. Hence the result. �

From Lemma 4 and Lemma 5, we conclude the following
theorem.

Theorem 6 A set S of n points in IR3 can be prepro-
cessed in time O(n log2 n) into a data structure of size
O(n log2 n) so that given a query axes-parallel rectangle
q, the range successor query can be answered in O(log n)
time.

By using Lemma 3 and Theorem 6, we can conclude the
following:

Lemma 7 If the points are in the range [0, U]× [0, U],
O(logU) candidate rectangles for the point P1 are gen-
erated in O(logU log n) time. Hence the total time
needed to find the highest density axes parallel rectangle
is O(n logU log n+ n log2 n).

The above lemma will also hold when the coordinates
of the points are integers in IR× [0, U].

3.3 A Reduced Spaced Data Structure

Next we present RSL, a reduced space data structure
for the 3-dimensional range successor problem.
Steps of Preprocessing :

1. Let us change the degree of the internal nodes of
the tree Tx to O(

√
log n) instead of two. The height

of the tree is therefore O(logn
log logn).

2. In each internal node µ ∈ Tx, we create the aux-
iliary array Aµ. The array Aµ stores the sorted y
coordinates of the points whose x coordinates are
associated in the leaf nodes.

3. Any element of Aµ will now have with 2 pointers
pointing to two elements in each of the auxiliary
arrays belonging to the

√
log n children of µ. One

pointer will point to the smallest value in the array
Aw greater than the element and the other pointer
will point to the largest element in the array Aw
smaller than the element. Here w is a child of µ.
Hence any element in Aµ will have 2

√
log n point-

ers. The construction of Aµ is discussed later.

4. Repeat the steps (3), (6), (7), (8) of the preprocess-
ing algorithm in sub section 3.1.

3.3.1 Construction of the array Aµ

Building the array Aµ is easy. Let Aw1
, . . . , Aw√logn

are

the sorted arrays present at the
√

log n children of the
node µ. From each array Awi ∀i = 1, . . . ,

√
log n, take

its smallest element and construct a min-heap. The
height of the heap will be O(log log n). Now the root
node of the heap will contain the smallest element of
the heap. We will store the element of the root to the
first available index of Aµ and this element will have a
pointers to the elements currently present in the heap at

CCCG 2011, Toronto ON, August 10–12, 2011

G2

G1

G3

n1 n2
n3

Figure 3: The nodes marked black are the ones to which
the interval [x1,∞) is allocated

their respective arrays. It will also have a pointer to the
next value of the array Awi from which it originated.
From the array Awi take the next element and insert
it into the heap. This method has been used in [5] for
reporting the top k weights in a query rectangle.

Lemma 8 The data structure RSL for range successor

queries can be built in O(n log2 n
log logn) time and occupies

O(n log2 n
log logn) space.

3.4 The Query Procedure

Let our query q = [x1,∞) × [y1, y2] × [wt,∞) and we
would like to find the point with the smallest x coordi-
nate in it. Let us denote the tree Tx as the primary tree.
This tree is a variant of the range tree used by [2] and [3].
As mentioned in [2], an interval [a, b] can be represented
as a union of node ranges of some nodes v1, . . . , vk that
can be grouped into logn

log logn groups G1, . . . , Gh. Each
group Gi contains a set of children vli , vli+1

, . . . , vlr for
some node vl. There are at most two groups in each
level. Hence there are O(logn

log logn) groups. Consider

the interval [x1,∞). We can also write this interval
as [x1, xmax] where xmax is the maximum x coordinate
among all the points of the set S. See Figure 3. Let
[x1, xmax] is equal to the union of the intervals of the
black nodes. These black nodes are divided into three
groups and are assigned to the nodes marked G1, G2

and G3.
Let p1 be the point with the smallest x coordinate in q.
Let us also suppose that p1 is not present in the nodes
marked by the groups G1 and G2. Now suppose we
are at the node marked G3. We need to decide, among
the three children of G3 marked as n1, n2, n3, which
node should we visit ? It can be noticed that if there
is even a single point from the node marked n1 fitting
inside the query q, the point p1 has to be present in n1.
Therefore, we need a way to decide if it is profitable
to visit the node n1 (or in fact any node). Remember
that we have an array AG3

at the node marked G3 such
that AG3

sorts all the points that are stored at the leaf
nodes of the subtree rooted at G3. The array AG3

is
sorted according to the y coordinates of the points that

are present in the leaf nodes of the tree rooted at node
marked G3. Moreover each index i of the array AG3

has
a pointer to the smallest value greater than AG3 [i] and
the largest value smaller than AG3 [i] in the array An1 .
So if we find the smallest value greater than y and the
largest value smaller than y1 for the array AG3

, then we
can easily do the same for An1

. Once we discover the
two indices of the array An1 , using range minima query
we can find the largest weight w′ for the points whose
y coordinates are stored in the array An1

in between
those two indices in O(1) time. If w′ > wt, we focus our
searching only at the node n1. We move to the node n1
and follow steps similar to that of the query algorithm
in subsection 3.2 to find out the point with the smallest
x coordinate present in S∩q and return it as an answer.
On the other hand, if wt < w′, we move to the next node
(n2 as per our Figure 3).

Lemma 9 The data structure RSL supports 3-
dimensional range successor queries in O(log n) time.

Theorem 10 A set S of n points in IR3 can be prepro-

cessed in time O(n log2 n
log logn) into a data structure of size

O(n log2 n
log logn) so that given a query axes-parallel rectangle

q, the range successor query can be answered in O(log n)
time.

Using the above theorem, we conclude the following

Theorem 11 Given a set of n weighted points whose
coordinates are integers in [0, U] × [0, U], the highest
density axes parallel rectangle can be found in time

O(n log2 n
log logn + n logU log n) using space of O(n log2 n

log logn).

4 On Finding the Highest Density Axes Parallel 3-
dimensional box

Before we start the section, we define our density as
follows:

Definition 2 Let S be a set of n points in IR3. The
density of the axes parallel d-box R (for d = 3) with
volume V (R) and covering the points in R, is defined

as
∑
pi∈R

wi

V (R) .

In this section, we wish to solve the following problem

Problem 4.1 We are given a set of n weighted points
such that their coordinates are integers in the range of
[0, U] × [0, U] × [0, U]. We wish to find the cluster of
k ≥ 2 points such that the minimum area axes parallel d-
box for d = 3 covering them attains the highest density.

Before we try to solve the Problem 4.1, we refer to the
following fact proved by Majumder et al. in [1].

23rd Canadian Conference on Computational Geometry, 2011

Fact 1 Let Q =
∑n
i=1 ai∑n
i=1 bi

for ai, bi > 0, then

Minni=1
ai
bi
≤ Q ≤Maxni=1

ai
bi

Now, assuming that all the coordinates of the points are
distinct, we propose the following lemma

R1
R3

R2

p2

p4

p1

p3

Figure 4: The case of axes parallel 3-dimensional box
for d = 3

Lemma 12 The highest density axes parallel 3-
dimensional box will consist of two points.

Proof: The proof is similar to the proof of Lemma
1 provided in [1]. See Figure 4. Let our highest
density axes parallel 3- dimensional box contains k
points p1, p2, . . . , pk. We partition the box into k − 1
smaller pieces as shown in the Figure 4. The density

of our box is wt(p1)+wt(p2)+...+wt(pk)
V (R) ≤ wt(p1)+wt(p2)

V (R1)
+

wt(p2)+wt(p3)
V (R2)

+ . . . + wt(pk−1)+wt(pk)
V (Rk−1)

, where V (Ri) de-

notes the volume of the rectangular axis parallel d-box
Ri. Using Fact 1, we can prove the lemma. �

The highest density axes parallel 3-dimensional box will
contain two points of the set S as diagonally opposite
corners. Using the Lemma 12 and the ideas of Section
2.1 and data structure similar to 3.1, we have the fol-
lowing theorem.

Theorem 13 Given a set of n weighted points whose
coordinates are integers in range of [0, U]×[0, U]×[0, U],
the highest density axes parallel 3-dimensional box can
be found in O(n logU log3 n) times using O(n log3 n)
space.

References

[1] S. Majumder, B. B. Bhattacharya, On the den-
sity and discrepancy of a 2D point set with applica-
tions to thermal analysis of VLSI chips. Informa-
tion Processing Letters 107 (2008), pp. 177–182.

[2] Y. Nekrich, Orthogonal Range Searching in Linear
and Almost-Linear Space. Computational Geome-
try: Theory and Applications 42(4) (2009), pp.
342–351.

[3] C. C. Yu, W. K. Hon, B. F. Wang, Improved
Data Structures for Orthogonal Range Successor

Queries. Computational Geometry: Theory and
Applications 44 (2011), pp. 148– 159.

[4] S. Saxena, Dominance made simple. Information
Processing Letters 109 (2009), pp. 419–421.

[5] S. Rahul, P. Gupta, R. Janardan K. S. Rajan, Ef-
ficient top-k queries for orthogonal ranges, In Proc.
International Workshop on Algorithms and Com-
putation, Springer Verlag Lecture Notes in Com-
puter Science No. 6552, pp. 110–121.

[6] H. Yuan, M. Atallah, Data Structures for Range
Minimum Queries in Multidimensional Arrays. In
Proceedings of SODA 2010, pp. 150–160.

[7] H. P. Lenhof, M. H. M. Smid, Using Persistence
for adding range restrictions to searching problems.
RAIRO Theoretical Informatics and Applications.
28(1) (1994), pp. 25–49.

[8] M. de. Berg, M. van Kreveld, M. Overmars and
O. Schwarzkopf. Computational Geometry: Algo-
rithms and Applications. Springer, Verlag, 2000.

