
CCCG 2011, Toronto ON, August 10–12, 2011

Detecting VLSI Layout and Connectivity Errors in a Query Window

Ananda Swarup Das∗ Prosenjit Gupta † Kannan Srinathan ‡

Abstract

The VLSI layout designing is a highly complex process
and hence a layout is often subjected to Layout Verifi-
cation that includes (a) Design Rule Checking to check
if the layout satisfies various design rules and (b) Con-
nectivity Extraction to check if the components of the
layout are properly electrically connected. In this work
we study two geometric query problems which have ap-
plications in the above layout verification phase.

1 Introduction

A VLSI chip consists of millions of transistors. Often
for the ease of fabrication, these transistors are grouped
together to form blocks. Each block has pins on its pe-
riphery. Each pin is supposed to carry a signal which is
denoted by a net id associated with it. All the pins of
the same net id should be connected by wires which is
done in the routing phase of VLSI physical design life cy-
cle. The routing phase is again divided into two phases
namely (a) global and (b) detailed. In the global routing
phase the regions through which the routing is to be car-
ried out are decided. The actual wiring is done in the
detailed routing phase. The detailed routing phase is
again of two types namely (i) detailed unrestricted rout-
ing and (ii) detailed restricted routing. In the detailed
restricted routing phase, either channels or switch-boxes
are used for routing. In this work, we will assume that
channels are used for routing. However, our work has
applications even when switch-boxes are used. In fact
our first problem has applications even when detailed
unrestricted routing is used.
Channels are basically routing regions and are ab-
stracted as rectangles with two sides being open. We
present a pictorial representation of channels in Figure
1. In a channel, pins are placed on the either side of the
boundaries. The dotted horizontal lines in Figure 1 are
the tracks. The thick black horizontal segments on the
tracks are the trunks. Pins are connected to the trunks
using branches and two trunks on two different tracks
are connected using doglegs.

∗International Institute of Information Technology , Hyder-
abad, India, anandaswarup@gmail.com
†Heritage Institute of Technology, Kolkata, India , prosenjit

gupta@acm.org
‡International Institute of Information Technology , Hyder-

abad, India, srinathan@iiit.ac.in

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

channel boundary

track

track

track

(a)

channel boundary

doglegbranches

trunk

Figure 1: The figure depicts a channel. Pins are on
either of the boundaries of the channel.

It should be noted that no two pins of different signal
ids should be connected to the same trunk. Also, no
two trunks being connected to pins of different signal
ids should be connected. As stated before, all the pins
of same net id should be electrically connected. Con-
sider Figure 1. Let all the pins are of same signal id
and hence they are connected. Once the routing phase
is over, a designer is often interested to find (a) if there
exist two pins which should have been connected but are
not (b) if two pins of different signal ids are connected
to the same trunk and (c) no two trunks connected to
pins of different signal ids are connected by a dogleg.
While working with a layout editor, a designer often
zooms into a particular section of the layout to find er-
rors within his/her window of interest. In this work we
design data structures using which a designer can effi-
ciently decide the presence of any of the three conditions
within the query of interest.

2 Assumptions

In an abstract sense, each pin can be considered as a
node of a graph. Two nodes of the graph share an undi-
rected edge if they are directly connected by wires. As-
sume a, b, c to be the nodes of a graph where a, b share an
edge and b, c share an edge. We consider that the nodes
a, b, c all are connected as a signal originating from the
pin a can reach c through b. See Figure 2 (1).
Each graph is like a connected component. It can be
noticed that if two pins are not connected, they will
belong to two different connected components. Each
connected component can be assigned a unique id. In
our work, we assume that (a) each pin is given to us
as a point in plane, its net id as sid and the id of the

23rd Canadian Conference on Computational Geometry, 2011

a

dcba e f

G1
G2

e
f

b

c d
(1)

(2)

Figure 2: (1) The black nodes are the pins. The pins
a, b, c are connected, so are the pins d, e, f . (2) G1 is
the graph with the nodes a, b, c and G2 is the graph
corresponding to d, e, f .

connected component to which it belongs as the gid,
(b) each trunk is given as a horizontal segment and is
assigned a color which is equal to the sid of one of the
pins it is connected to, (c) each branch is given as a
vertical segment and is assigned a color which is equal
to the sid of the only pin it is connected to and (d) each
dogleg is given as a vertical segment and is assigned a
color which is equal to the sid of one of the two trunks
it is connected to.

3 Problem Definitions

In the rest of the paper, we refer to the following
condition as Condition 1:

Condition 1: sid(p1) = sid(p2), but gid(p1) 6= gid(p2).

In this work, we study the following two problems

Problem 3.1 We are given a set S of n points in R2.
Each point p ∈ S has two colors,namely, sid(p) and
gid(p), associated with it along with its coordinates. We
need to preprocess them into a data structure such that
given a query rectangle q = [a, b]× [c, d] we can decide if
there exist two points (p1, p2) ∈ S∩q such that sid(p1) =
sid(p2) but gid(p1) 6= gid(p2).

Problem 3.2 Let H and V be respectively the sets of
horizontal and vertical segments in R2. Each horizontal
segment h ∈ H (resp. v ∈ V) has a color namely,
sid(h) (resp. sid(v)) associated with it. The sid(h)
(resp sid(v)) is not necessarily unique. We need to pre-
process H and V into a data structure such that given a
query rectangle q = [a, b] × [c, d], we can efficiently de-
cide if there exists a pair of horizontal-vertical segments
(h, v) such that h ∩ v ∩ q 6= ∅ and sid(h) 6= sid(v).

4 Solutions for the Problem 3.1

4.1 Solution 1: A Simple Idea

4.1.1 Preprocessing

We divide the points of the set S into subsets S1, . . . , Sk
where the subset Si contains the points with sid equal
to i. Next, we sort the points in Si according to their
gids. For every pair of points p,m ∈ Si, we create a
4-d point (px, py,mx,my) if gid(p) 6= gid(m) and store
it into a data structure D for range searching in R4.

4.1.2 Query Algorithm

Given a query rectangle q = [a, b] × [c, d], we search
the data structure D with the query q′ = [a, b]× [c, d]×
[a, b]×[c, d]. If we find any point in q′, we return “YES”,
else we return “No”.

Lemma 1 Using the data structure of [8] for range
searching in R4, a data structure of size O(n2(logn

log logn)3)
can be constructed such that given a query rectangle q we
can decide in O(log2 n

log logn) time, if there is any instance
of Condition (1) inside q.

4.2 Solution 2: Improving the Storage Space While
Trading-off Query Time

4.2.1 Preprocessing:

For each point p ∈ S we create two points namely p1 and
p2. We set the coordinates of both the points to (px, py).
We then color p1 with the color sid(p). The point p2

is colored with a composite color which uniquely repre-
sents the chromatic pair < sid(p), gid(p) >. We store
the points p1 in a set SL and the points p2 in SB . We
preprocess the points in SL and SB into two data struc-
turesDL andDB respectively. DL andDB are instances
of generalized two-dimensional orthogonal range count-
ing.

4.2.2 Query Algorithm:

Given a query rectangle q, we first find the distinct col-
ors of the points of the set SL that are present in q.
This is done by querying DL with q. Let the number of
distinct colors of the points of the set SL present in q
be nL. Next, we find the distinct colors of the points of
the set SB that are present in q by searching the data
structure DB . We call this value as nB . If nL < nB , we
return “YES”. Else, we return “No”.

Lemma 2 There exists an instance of Condition (1)
inside the query rectangle iff nL < nB.

Hence we have the following result

CCCG 2011, Toronto ON, August 10–12, 2011

Lemma 3 There exists a data structure ([1]) of size
O(n2 log2 n) such that given a query rectangle q we can
decide in O(log2 n) time, if there is any instance of Con-
dition (1) inside q. A space-time trade of data structure
([3]) with a space bound of O((n/r)2 log6 n + n log4 n)
and a query time of O(r log7 n) such that 1 ≤ r ≤ n is
also possible.

4.3 Solution 3: Further Improving the Storage
Space

3

4

down ray

right ray

left ray right ray

up ray

down ray

1

2

Figure 3: The arrow marks indicate that each of the
rays are extending towards ∞. The right ray will be
allocated to all the nodes marked black. The down ray
will be allocated to the nodes marked 1, 2, 3 and 4

In this section, we propose a solution which needs O(n2)
storage space. Using the data structure, we can solve
the Problem 3.1 in O(log2 n) time.

4.3.1 Preprocessing Stage 1→ Assignment of rays:

1. Consider the point set S. From each point p ∈
S, we shoot four rays namely two horizontal rays,
one traveling −∞, the other traveling +∞ and two
vertical rays one traveling −∞, the other traveling
+∞.

2. We call the horizontal rays traveling towards −∞
as left rays, horizontal rays traveling towards +∞
as right rays, vertical rays traveling towards +∞ as
up rays and the vertical rays traveling −∞ as down
rays. See Figure 3.

3. Let us sort the points of the set S in terms of their
x coordinates. Construct a balanced binary search

tree Tx whose leaf nodes corresponds to the elemen-
tary intervals being induced by the x coordinates
of the points of the set S.

4. Each internal node µ ∈ Tx stores an interval Int(µ)
which is union of the elementary intervals being
stored in the leaf nodes of the subtree rooted at µ.

5. Now consider all the right rays, up rays and the
down rays. To the node µ ∈ Tx, we allocate the
right ray emanating from the point p if Int(µ) ∩
[px,∞) 6= ∅ where px is the x coordinate of the
point p. Refer to Figure 3.

6. For each up ray (resp. down ray), we first find the
leaf node storing the x coordinate of the up ray or
the down ray. Then, starting from the leaf node
τ , we allocate it to all the ancestors of the leaf node.

4.3.2 Preprocessing Stage 2→ Classification of rays
at the node w :

seg 2

Segments allocated to node w

Int(w)

(vx,vy)

seg 4

seg 1

seg 3

Figure 4: In this figure, seg 1 is a right ray completely
covering Int(w). seg 2 is a right ray partially overlap-
ping with Int(w). seg 3 is an up ray and seg 4 us a
down ray.

1. Consider a node w ∈ Tx and a ray assigned to the
node w. Let the x coordinate of the end point of the
ray be px. With the concerned ray, the following
are the possibilities:

• Int(w) ⊆ [px,∞) that is the interval of node
w is completely contained in the semi-infinite
interval [px,∞), the horizontal projection of
the ray.
• Int(w) ∩ [px,∞) 6= ∅, that is the interval
Int(w) is not completely contained in [px,∞)
but they are overlapping.

23rd Canadian Conference on Computational Geometry, 2011

• The ray is an up ray or a down ray.

2. Let Lw,F is the list of rays whose horizontal projec-
tion completely contains Int(w). Let Lw,P is the
list of rays whose horizontal projections are par-
tially overlapping with Int(w). Let Lverti,w be the
list of up and down rays allocated to w or in other
words whose x coordinates are stored in the leaf
nodes of the subtree rooted at w.

See Figure 4. In that figure, the horizontal ray denoted
by seg 1 belongs to Lw,F , seg 2 belongs to Lw,P . The
up ray and the down ray will belong to Lverti,w.

4.3.3 Preprocessing Stage 3 → Creation of 2-d and
3-d points:

1. Consider any horizontal ray h ∈ Lw,F . Let the
coordinates of the end point of the h be (hx, hy).

2. Check if there is any vertical ray v ∈ Lverti,w such
that sid(h) = sid(v) but gid(h) 6= gid(v).

3. Let there be some vertical rays v. We will denote
the coordinates of the end points of v as (vx, vy).

• Among all the down rays (respectively up
rays) select the one whose vy is just above
(respectively just below) hy. Let that vy be
denoted as vy,1 for the down ray and vy,2 for
the up ray.

• We create two 3-d points (hx, hy, vy,1),
(hx, vy,2, hy).

4. Similarly, for each horizontal ray h ∈ Lw,P which
is partially overlapping with Int(w),

• check if there is any vertical ray v ∈ Lverti,w
such that sid(h) = sid(v) but gid(h) 6= gid(v)
and h ∩ v 6= ∅.

• Among all the down rays (respectively up
rays) select the one whose vy is just above (re-
spectively just below) hy. We will denote that
as vy,1 for the down ray and vy,2 for the up ray.

• We create two 2-d points (hy, vy,1), (vy,2, hy).

See Figure 4. In that figure, the seg 1 will contribute to
3-d points and the seg 2 will contribute to 2-d points.

4.3.4 Preprocessing Stage 4 → Storing the 2-d and
3-d points:

1. We store the 3-d points in a 3-d dominance report-
ing data structure D3,w of [5].

2. The 2-d points are stored in a priority search tree
TPST,w [7].

Lemma 4 The storage space needed by the above data
structure is O(n2).

4.3.5 Query Algorithm:

a b

seg 1

(a,c)

up ray

query rectangle

seg 2

seg 3

Fig (a) Fig (b)

(b,d)

Int(w)

node w

At node w

Figure 5: The segment [a, b] of the query rectangle q =
[a, b]× [c, d] is allocated to the nodes marked black. The
scenario at a node w to whom [a, b] is allocated.

1. Given a query rectangle q = [a, b] × [c, d] we first
allocate the segment [a, b] to the nodes of Tx. The
rule that we follow for allocating [a, b] to the node
µ is Int(µ) ⊆ [a, b] but Int(parent(µ)) * [a, b]. It
should be noted that the way the segment [a, b] is
allocated is not the same as the way we allocate
the horizontal rays. It should also be mentioned
that the segment [a, b] will be allocated to O(log n)
nodes of the tree Tx.

2. Let Scan be the set of O(log n) canonical nodes
to which the segment [a, b] is allocated. At each
node w ∈ Scan first search the priority search tree
TPST,w with the query [c,∞)× (−∞, d].

• If we find a point in TPST,w∩ [c,∞)×(−∞, d],
we return “YES”.

• Else we search the 3-d dominance data struc-
ture D3,w with the query [a,∞) × [c,∞) ×
(−∞, d]. If we find a point in D3,w ∩ [a,∞)×
[c,∞)× (−∞, d], we return “YES”.

Lemma 5 The query time of the above algorithm is
O(log2 n).

We therefore summarize the results of the Problem 3.1
with the following theorem

Theorem 6 Given a set S of n points in R2 such
that each point p = (px, py) has two associated colors
gid(p), sid(p) associated with it,

1. There exists a data structure of size
O(n2(logn

log logn)3) can be constructed such that given

a query rectangle q we can decide in O(log2 n
log logn)

time, sid(p1) = sid(p2) but gid(p1) 6= gid(p2).

CCCG 2011, Toronto ON, August 10–12, 2011

2. There exists a data structure of size O(n2 log2 n)
such that given query rectangle q, in O(log2 n) time
we can decide if there exist two points p1, p2 in q
such that sid(p1) = sid(p2) but gid(p1) 6= gid(p2).

3. A space-time trade off data structure with storage
bound O((n/r)2 log6 n + n log4 n) and query time
O(r log7 n) is also possible. Here r is a user defined
parameter.

4. We also have a data structure with storage space
requirement of O(n2) and query time O(log2 n) to
answer the same query.

5 Solution for the Problem 3.2

Consider a horizontal vertical segment intersection
inside a query rectangle. There are two possible
scenarios
(a) at least one end point of either of the segments
is inside the query rectangle. We call this kind of
intersections as intersections of type 1.
(b) Both the end points of both the segments are
outside q that is the segments completely cross the
query rectangle. We call this kind of intersections as
intersections of type 2.

For dealing with the first situation, we consider the case
where the lower end point of the vertical segment is
inside the query rectangle. Similar arrangements have
to be done for the upper end point.

5.1 Preprocessing a data structure

5.1.1 Preprocessing Phase 1→ Creation of 2-d
points:

Consider the lower end point p′′ of a vertical segment v.
Let the y coordinate of p′′ be vy. We find the horizon-
tal segment h whose y projection is just above vy and
sid(v) 6= sid(h). Let the y projection of h be hy. We
create a 2-d point (vy, hy). The step has to be repeated
for all the vertical segments of the set V .

5.1.2 Preprocessing Phase 2→ Constructing a Seg-
ment tree:

Let M ′ be the sorted list of the x coordinates of the end
points of the horizontal and vertical segments in H and
V respectively. We construct a segment tree Tx whose
leaf nodes correspond to the elementary intervals in-
duced by the x coordinates of the set M ′. Each internal
node µ ∈ Tx stores an interval Int(µ) which is union of
the elementary intervals being stored in the leaf nodes
of the subtree rooted at µ. A horizontal segment h ∈ H
is allocated to a node µ ∈ Tx if Int(µ) is completely
contained in the horizontal projection of the h whereas

Int(parent(µ)) is not. For each vertical segment v we
locate the leaf node in Tx which stores the x coordinate
of v.Then starting from that leaf node, we store a copy
of v in all the ancestors of the leaf node including the
root of Tx.

5.1.3 Preprocessing Phase 3→ Auxiliary dominating
set finding data structures:

Consider a node µ ∈ Tx. Let LH,µ and LV,µ be the
set of horizontal and vertical segments allocated to the
node µ. At the node µ, we do the following:

1. Consider a vertical segment v ∈ LV,µ and consider
the point (vy, hy) we have created in phase 1. We
store the point in a priority search tree Tµ,1. This
has to be done for all the vertical segments in LV,µ.

2. Next, for each v ∈ LV,µ whose y projection is
[vy1 , vy2], we create a 2-d point (vy1 , vy2). We store
these points in a priority search tree Tµ,2.

3. Finally, for each v ∈ LV,µ, we create a 3-d point
(vy1 , vy2 , sid(v)). We store these points in a 3-
d dominance reporting data structure Tµ,3 of [5].
The Tµ,3 will support queries of the form [x,∞)×
(−∞, y]× [z,∞) and [x,∞)× (−∞, y]× (−∞, z].

5.1.4 Preprocessing Phase 4→ Range Minima data
structure:

Consider any node µ ∈ Tx. Consider the horizontal
segments h ∈ LH,µ. We store the y coordinates of these
horizontal segments in an array Ysort,µ in a sorted order.
Next, we create a 1-d range minima data structure RMµ

[6] such that given two indices of the array Ysort,µ, we
can decide in O(1) time if all the horizontal segments
whose y coordinates are stored in between the two query
indices in the array Ysort,µ have the same sid.

5.2 Query Algorithm

Given a query rectangle [a, b] × [c, d], allocate the seg-
ment [a, b] to a node µ of the segment tree Tx if Int(µ) ⊆
[a, b] but Int(parent(µ)) * [a, b]. The segment [a, b] will
be allocated to O(log n) nodes of the tree Tx.

5.2.1 Intersections of type 1

Let Scan be the set of such nodes. Let us first focus
on the intersections of type 1 that is when at least one
of the end points of the intersecting segments are inside
the query rectangle. We will explain our steps assuming
that our focus is on the lower end points of the vertical
segments.

1. Any vertical segment that intersects the query rect-
angle q is present in any of the nodes u ∈ Scan. We

23rd Canadian Conference on Computational Geometry, 2011

therefore search the priority search tree Tu,1 ∀u ∈
Scan with the query q′ = [c,∞)× (−∞, d].

2. While searching Tu,1 with q′, if we find any point p
in q′, we return “Yes” and Exit.

5.2.2 Intersections of type 2

(a) (b)

Figure 6: (a) All the line segments except the dotted
horizontal segment are of same sid. (b) All the hori-
zontal segments are of same sid. The dotted vertical
segment is of different sid.

When the end points of the intersecting horizontal
and vertical segments are outside the query rectangle,
we do the following:

1. At each node µ ∈ Scan and the ancestors of the
node µ up to root in the tree Tx, we search the
array Ysort at the respective nodes to find the the
indices i, j such that c ≤ Ysort[i] < Ysort[j] ≤ d.

2. By using the range minima data structure RM at
that respective node, we then decide if all the hori-
zontal segments whose y projections are in between
the indices i and j have the same sid.

3. If we find that all the horizontal segments allocated
to the node µ or its ancestors are not of same sid,
we come back to the node µ and search the data
structure T2,µ with the query (−∞, c] × [d,∞). If
there is any point inside (−∞, c]×[d,∞), we return
“YES” and Exit. See Figure 6 (a).

4. Suppose all the horizontal segments allocated to the
node µ or its ancestors are of same sid, we then
find that particular sid. Next, We come back to
the node µ and search Tµ,3 with (−∞, c]× [d,∞)×
[sid+1,∞) and (−∞, c]× [d,∞)×(−∞, sid−1]. If
we find any point in either of the queries, we return
“YES” and Exit. See Figure 6 (b).

Lemma 7 The algorithm returns a “YES” iff there ex-
ist a pair of horizontal-vertical segments h,v, such that
h ∩ v ∩ q 6= ∅ and sid(v) 6= sid(h).

Theorem 8 There exists a data structure D of size
O(n log n) such that given a query axes parallel rect-
angle q, we can decide in O(log2 n) time if there exists
a pair (h, v) where h is a horizontal segment and v is
a vertical segment such that h intersects v inside q and
sid(h) 6= sid(v).

References

[1] P. Gupta, R. Janardan, and M. Smid. Further
results on generalized intersection searching prob-
lems: counting, reporting, and dynamization. In
Journal of Algorithms, 19 , pp. 282–317, 1995.

[2] A. Agrawal, P. Gupta. Incremental Analysis of
Large VLSI Layouts. In Integrations, 42(2), 205–
210, 2009.

[3] H. Kaplan, N. Rubin, M. Sharir, E. Verbin. Count-
ing colors in boxes. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp.
785–794, 2008.

[4] B. Chazelle, H. Edelsbrunner, L. J. Guibas and
M. Sharir. Algorithms for Bichromatic Line Seg-
ment Problems and Polyhedral Terrains. In Algo-
rithmica, 11, pp. 116–132, Springer Verlag, 1994.

[5] P. Afshani. On Dominance Reporting in 3D Pro-
ceedings of 16thEuropean Symposium on Algo-
rithms (ESA), pp. 41–51, 2008.

[6] H. Yuan, M. Atallah. Data Structures for Range
Minimum Queries in Multidimensional Arrays. In
Proceedings of SODA, pp. 150–160, 2010.

[7] E. M. McCreight. Priority Search Trees. In SIAM
Journal of Computing. vol. 14(2), pp. 257–276,
1985.

[8] P. Afshani, L. Arge, K. D. Larsen Orthogonal range
reporting: query lower bounds, optimal structures
in 3-d, and higher-dimensional improvements In
Proceedings of Symposium on Computational Ge-
ometry, pp. 240–246, 2010.

[9] www.bwrc.eecs.berkeley.edu/Classes/icbook
/magic/index.html

