
CCCG 2011, Toronto ON, August 10–12, 2011

Memory-Constrained Algorithms for Shortest Path Problems

Tetsuo Asano∗ Benjamin Doerr†

Abstract

We present an algorithm computing a shortest path
between to vertices in a square grid graph with edge
weights that uses memory less than linear in the num-
ber of vertices (apart from that for storing in the in-
put). For any ε > 0, our algorithm uses a work space of
O(n(1/2)+ε) words and runs in O(nO(1/ε)) time.

1 Introduction

It is well known that given a weighted graph of n ver-
tices, the shortest path between any two vertices can
be computed in O(n2) time using work space of O(n)
words in addition to arrays keeping graph information,
whose total size is O(m+ n), where m is the number of
edges and m = O(n2) in general. This is achieved by
the original version of Dijstra’s algorithms [1].

It is known that the shortest path problem is NL-
complete [2]. In other words, it seems hopeless to have
an algorithm for the problem using work space of O(1)
words of O(log n) bits.

What happens if we allow a larger, but sublinear work
space? Surprisingly, nothing is known for this question
as far as the authors know. In this first work on this
problem we prove that there is a sublinear-space algo-
rithm for computing the shortest path in a grid graph
of size

√
n × √

n. Our algorithm uses a work space of
O(n(1/2)+ε) words and runs in O(nO(1/ε)) time for any
fixed ε > 0.

2 Computing the Shortest Path Distance

We first present a space-efficient algorithm for comput-
ing the length of the shortest path in a grid graph of
size

√
n× √

n where the source and target vertices are
located at the lower left corner and upper right corner
of the grid, respectively. Once we know an algorithm
for computing the shortest path distance, we can report
the shortest path by repeatedly applying the algorithm.
Throughout the paper we assume that the length of a
word is long enough to keep the shortest path distance
for any vertex in a given graph.

∗School of Information Science, JAIST, Japan,

t-asano@jaist.ac.jp
†Max-Planck-Institut für Informatik, Germany,

doerr@mpi-inf.mpg.de

LetG = (V |E) be a square grid graph of size
√
n×√

n.
For simplicity, we assume that n is a square number and
thus

√
n is an integer. Two vertices are neighbors if their

L1-distance is one. All edges have positive weights.
First we decompose the grid graph G into k ×

k small square grid graphs called “block graphs”
S1(V1, E1), S2(V2, E2), . . . , Sk2(Vk2 , Ek2) of the same
size (

√
n/k)× (

√
n/k). These block graphs are ordered

arbitrarily as far as every block graph appears exactly
once in the order. The edge sets of these graphs form a
partition of E, i.e., we have
Ei ∩ Ej = ∅, for any i 6= j, and
E1 ∪E2 ∪ · · · ∪Ek2 = E.
Each vertex set Vi has O(

√
n/k) boundary vertices

which may be common to some other vertex sets, and
O(n/k2) inner vertices which are contained only in the
vertex set Vi. Since there are k

2 squares, the total num-
ber of boundary vertices is O(k2 ×√

n/k) = O(k
√
n).

Figure 1 shows an example of a grid graph and its
decomposition into 6×6 squares together with a shortest
path from the lower left corner to the upper right corner.
As is seen in the figure, a shortest path may visit a
square many times.

S0 S1 S3

S4 S5 S6

S7 S8 S9

s

s

w = O(
√

n)

h = O(
√

n)

Figure 1: An example of a grid graph of size k × k and
its decomposition into subgraphs called squares. The
shortest path from the lower left corner to the upper
right corner is also shown.

We are now ready to describe a basic algorithm for
computing the shortest path distance between two arbi-
trarily specified vertices in a given grid graph. We first

23rd Canadian Conference on Computational Geometry, 2011

assume that a source vertex is located at the lower left
corner of the grid and a target vertex at the upper right
corner. This constraint is removed later.

We execute a simple implementation of Dijkstra’s al-
gorithm [1] for small squares again and again. For the
implementation we need an array for storing temporary
distances from the source vertex. We use two different
arrays for this purpose. One is an array C to keep a dis-
tance from the source vertex to each boundary vertex
in the entire graph G. Its size is O(k

√
n). The array is

maintained during the entire algorithm.

The other is an array T to keep a temporary distance
from the source vertex (of the whole grid) to each vertex
in a square including boundary and inner vertices of
the square. It is used for a one-shot implementation of
Dijkstra’s algorithm for a small square (plus the source
vertex of the whole grid). Since each square has the
same shape, we can use the array again and again for
different squares.

Now, we begin with the lower left square S1 with the
source vertex s in it. After initializing the two arrays
C and T with infinity, we set C[s] = 0 for the source
vertex s. Then, using the array T for all vertices in S1,
we apply a simple implementation of Dijkstra’s shortest
path finding algorithm to the square S1. It runs in time
quadratic in the number of vertices, that is, in O(n2/k4)
time. As post-process, we transfer distances of all the
boundary vertices of S1 to the common array C.

Then, we move to the next square S2. The initializa-
tion step is to transfer distances of boundary vertices
of S2 stored in the common array C to the temporary
array T . Distance values for all inner vertices of S2

are initialized to infinity. Then, we implement Dijk-
stra’s algorithm to the square. As is well known, this
algorithm computes a shortest path tree which includes
every shortest path from a single source vertex to all
other vertices. If you needed a source vertex, you could
define an imaginary source vertex and imaginary edges
from it to all the boundary vertices of the square whose
weights are given by the current distance values of those
vertices.

After the square S2, we move to S3, S4, and so on
until the last square Sm. We call the entire process
stated above “a scan over the grid graph.”

What can we expect after a scan over the graph? Let
P be the shortest path. The path P passes through
a number of squares. Suppose P passes through
S1 = Sσ1 , Sσ2 , . . . , SσL

in this order. For example, the
shortest path in Figure 1 is characterized by a sequence
(S1, S2, S5, S4, S5, S4, S7, S4, S7, S8, S9, S6, S9, S8, S5, S6,
S3, S6, S3, S6, S9).

How long is the sequence? There are O(k2) squares
and each square is visited by the sequence at most
O(

√
n/k) times (because this is the number of boundary

vertices of a square). Since the shortest path must be

simple, we can conclude that the length L of the path P
is bounded by O(k2)×O(

√
n/k) = O(k

√
n). By induc-

tion, we also see that after the i-th scan over the graph,
we have computed the shortest path distance up to all
boundary vertices of Sσi. Thus, the shortest path dis-
tance must have been computed after O(k

√
n)-th scan.

Each scan is done in O((n/k2)2 × k2) = O(n2/k2) time
using work space of O(k

√
n+ n/k2) words.

Algorithm 1 is a formal description of this basic pro-
cedure.

Theorem 1 Given a grid graph of size O(
√
n)×O(

√
n)

with positive edge weights, we can compute the shortest

path distance from the lower left corner to the upper

right corner of the grid in O(n2+1/2/k) time using work

space of O(k
√
n+ n/k2) words.

Of course, in an actual implementation of the algo-
rithm we would stop after a whole scan over the grid
graph did not result in improving any shortest path dis-
tances to boundary vertices.
It is not so hard to extend the algorithm so that it

finds the shortest path distance for any two vertices as
far as both of them are boundary vertices. We could
also extend it to allow inner vertices as source and target
vertices.
The work space is minimized to O(n2/3) when k

√
n =

n/k2, that is, when k = n1/6.

3 Reporting the Shortest Path

Once we have computed the shortest path distance
d(s, t) from s to t, we can report the shortest path.
When we have computed d(s, t), we have also computed
the shortest path distance d(s, vi) for every boundary
vertex vi not only in the last square Sm, but also in all
other squares. Keeping the distances in yet another ar-
ray D of size O(n2/3), we execute Dijkstra’s algorithm
to the square Sm with the upper right corner vertex t
as a new source vertex. Now, for each boundary ver-
tex vi we have two distances, the global shortest path
distance D(s, vi) from s to vi and the shortest path dis-
tance d(t, vi) from t to vi within the square Sm. We
choose the boundary vertex vi of the largest value of
d(vi, t) such that
D(s, vi) + d(vi, t) = d(s, t).

Since Dijkstra’s algorithm finds all shortest paths from t
within the square, we can report the shortest path from
t to vi as the last part of the entire shortest path from
s to t.
Our next target is the boundary vertex vi. To re-

port the shortest path from s to vi, we repeat the same
process again with vi as a new target vertex instead of
t within the square containing vi which is adjacent to
the previous square. Forgetting everything we apply the
same algorithm from the scratch again to compute the

CCCG 2011, Toronto ON, August 10–12, 2011

Algorithm 1: Basic Algorithm for Computing the
Shortest Path Distance between Two Vertices in a
Grid Graph.

Input: A grid graph G defined by a
√
n×√

n grid
with weighted edges, assuming

√
n is an

integer.
Output: The shortest path distance from a source

vertex s located at the lower left corner
to a target vertex t at the upper right
corner.

Decompose the grid into k × k squares
S1, S2, . . . , Sk2 of the same size.;
Let Vi be a set of vertices in a square Si for each
i = 1, . . . , k2.;
// Assume each Vi contains exactly√
n/k ×√

n/k = n/k2 vertices.;
Let Bi be a set of vertices of Vi that lie on the
boundary of Si (those vertices shared with other
squares), called boundary vertices of Si.;
// The number of boundary vertices of each square
is O(

√
n/k).;

Let B = B1 ∪ · · ·Bk2 be the set of all boundary
vertices.;
// The total number of boundary vertices is
O(k

√
n).;

Define an array C[] for distances to boundary
vertices.;
Define an array T [] for distances to vertices in a
square.;
for each boundary vertex vi do

C[i] = ∞.

C[0] = 0. // v0 is the source vertex s.;
for round = 1 to k

√
n do

for each Square Si do

for each boundary vertex vi,j = vp in Si do
T [j] = C[p].

for each inner vertex vi,j in Si do
T [j] = ∞.

// Dijkstra’s algorithm;
while there is an unselected vertex in Si do

Choose a vertex vi,p such that T [p] > 0
and T [p] is smallest.;
// The source vertex s should be treated
exceptionally. for each vertex vi,q in Si

adjacent to vi,p do
if T [q] > T [p] + w(vi,p, vi,q) then
T [q] = T [p] + w(vi,p, vi,q).;

T [p] = −T [p]. // Mark the vertex

// Transfer the results into the common
array C.;
for each boundary vertex vi,j = vp in Si do

C[p] = −T [j].

return the shortest path distance C[t] of the target

vertex vt at the upper right corner.

shortest path distance from s to vi. In a similar way,
we can report the shortest path from vi to the next in-
termediate vertex vj on the shortest path from vi to s.

Theorem 2 Given a grid graph of size O(
√
n)×O(

√
n)

with positive edge weights, we can output the shortest

path between any two vertices on the grid in O(n3) time

using work space of O(k
√
n+n/k2) words for any value

of k with 2 ≤ k ≤ n/2.

Proof. We only show the time complexity of the al-
gorithm described above. Again, the number of iter-
ations is bounded by O(k

√
n). Since each iteration is

done in O((n2+1/2/k) time, the total time complexity is
O(n3). �

3.1 Some Generalizations

We have assumed that source and target vertices are
fixed to two corner vertices of the grid. It is rather easy
to remove this constraint. Suppose a source vertex s is
an inner vertex of a square Si. Then, we do nothing for
the squares S1, . . . , Si−1 in the first scan over the given
grid graph. Then, we execute Dijkstra’s algorithm to
the square Si after initializing the distance for the inner
vertex s as 0. Then, we can correctly compute distances
from s to all the boundary vertices of Si within the
square. It is just the same for a target vertex. Thus, just
small modifications are enough to adapt the previous
algorithm to apply for general cases where source and
target vertices are arbitrarily specified.

4 Reducing the work space

We have shown that the shortest path distance between
any two vertices in a grid graph of size

√
n × √

n can
be computed in O(n2+1/2/k) time using work space of
O(k

√
n + n/k2) words after decomposing the grid into

k× k equal small squares. We have also shown that the
work space is minimized to O(n2/3) when k = n1/6. Is
it possible to reduce the work space? Our answer is Yes.
A basic idea is to introduce recursion. Given a grid

graph of size
√
n × √

n, we decompose it into k × k
squares of equal dimensions. We further decompose
each square into k × k small squares of equal dimen-
sions.
At the top level, we have k2 squares (called level-1

squares) of dimensions
√
n/k × √

n/k. The number of
boundary vertices of each level-1 square is O(

√
n/k).

Thus, the total number of boundary vertices at level 1
is O(k

√
n).

Each level-1 square is decomposed into k2 small
squares (level-2 squares) of dimensions

√
n/k2×√

n/k2.
There are O(

√
n/k2) boundary vertices in each level-2

square, and thus the total number of boundary vertices
at level 2 in a level-1 square is O(

√
n). On the other

23rd Canadian Conference on Computational Geometry, 2011

hand, the number of inner vertice in each level-2 square
is O(n/k4).

√

n

√

n

√

n/k

√

n/k√

n/k2

√

n/k2

level-1 square level-2 square

Figure 2: Hierarchical Decomposition of a grid graph.
An example of a two-level decomposition.

As before, we apply Dijkstra’s algorithm to all level-1
squares in order, but we do not use inner vertices of each
square. We recursively apply the previous algorithm to
each level-1 square to compute distances for all bound-
ary vertices in the square using inner vertices of level-2
smaller squares.
Now, the work space we use consists of all boundary

vertices at level 1, all boundary vertices at level 2 in
the currently active level-1 square and all inner vertices
in the currently active level-2 small square and thus it
amounts to O(k

√
n +

√
n + n/k4). It is minimized to

O(n1/10
√
n) when k

√
n = n/k4, that is, when k = n1/10.

The time complexity increases. If we denote by T2 the
time for each level-2 square, then we have
T2 = O((n/k4)2) = O(n2/k8)

since we apply quadratic-time Dijkstra’s algorithm for
a square of size

√
n/k2 ×√

n/k2.
The time for each level-1 square, denoted by T1, is

given by
T1 = O(k2 × T2 ×

√
n) = O(n5/2/k6)

since we do scan the square just as before. In the similar
way, the time for the entire grid, denoted by T0, is given
by
T0 = O(k2 × T1 × k

√
n) = O(n3/k3).

Therefore, if we set k = O(n1/10), then the work
space is given by O(n1/10

√
n) and the time complex-

ity by O(n3/n1/30).
We can extend the recursion into level ℓ > 1. The

smallest square at level ℓ has dimensions
√
n/kℓ×√

n/kℓ

and contains (
√
n/kℓ)2 = n/k2ℓ inner vertices. When

we apply Dijkstra’s algorithm to the smallest square,
it takes O(n/k2ℓ) work space for inner vertices and
O(n2/k4ℓ) time. For the level i = 0, 1, . . . , ℓ − 1, the
number of boundary vertices in the level is given by

O(
√
n/ki+1) and the time complexity Ti for the level i

is given by
Ti = O(k2 ·Ti+1 ·(

√
n/ki+1)×k2) = O(

√
n/ki−3Ti+1).

Thus, we have
T0/Tℓ−1 = (T0/T1) · (T1/T2) · · · (Tℓ−2/Tℓ−1) =

n(ℓ−1)/2/kℓ(ℓ+1)/2.
We also have
Tℓ = O((n/k2ℓ)2) = O(n2/k4ℓ),

and
Tℓ−1 = O(k2 · Tℓ · (

√
n/kℓ) · k2) = O(n5/2/k5ℓ−4).

Combining the above results, we have

T0 = O(
nℓ/2+2

kℓ(ℓ+1)/2
).

On the other hand, the total work space S is given by

S = O(k
√
n+

√
n+

√
n

k
+ · · ·+

√
n

kℓ−2
+

n

kℓ
).

This total work space S is minimized to

S = O(n
1

2(ℓ+1)
√
n)

when k = O(n
1

2(ℓ+1)).
Substituting it into T0, we have

T0 = O(n2+ ℓ
2+ℓ

4(2ℓ+1))

Theorem 3 Given a grid graph of size O(
√
n)×O(

√
n)

with positive edge weights and an integer ℓ > 0, we

can output the shortest path between any two vertices

on the grid in O(n2+ ℓ
2+ℓ

4(2ℓ+1)) time using work space of

O(n
1

2(ℓ+1)
√
n) words.

5 Future Works

One of our future works is to extend the result in this
paper to a more general class of graphs. One target
class is one of maximal planar graphs. How to use a fa-
mous planar separator theorem is important. Another
interesting problem is to design a sublinear-space algo-
rithm for computing the shortest path on the Delaunay
triangulation of a point set in the plane.

References

[1] E. W. Dijkstra, “A note on two problems in connex-
ion with graphs,” Numerische Mathematik 1, 269-271,
1959.

[2] O. Goldreich, “Computational Complexity: A Concep-
tual Perspective,” Cambridge University Press, p. 182,
2008.

