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The 2×2 Simple Packing Problem
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Abstract

We significantly extend the class of polygons for which
the 2×2 simple packing problem can be solved in poly-
nomial time.

1 Introduction

We study the 2×2 simple packing problem: Given a sim-
ple rectilinear grid polygon P consisting of n edges and
containing N grid cells, determine the maximum num-
ber of non-overlapping, axis-aligned 2×2 squares that
can be packed into P [4]. The optimal solution is not
necessarily unique with respect to the placement of the
squares (Fig. 1). We, however, are interested only in
the optimal number of squares.

Figure 1: A polygon and one of its optimal solutions.

El-Khechen [6] proved that there always exists an op-
timal solution such that all packed squares are aligned
on the grid. Hence we consider only optimal solutions
of this type. We say that placing a square in a certain
location is optimal, if there exists an optimal solution
such that a square is placed in that location. Similarly,
we say that not placing a square in a certain location
does not affect optimality, if there is an optimal solu-
tion, such that no square is placed in that location.

Previous work. For polygons with holes, the 2×2
simple packing problem is known to be NP-hard [1].
Recently, it was proven to be NP-complete [5]. When
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the polygon does not contain holes it is not known
whether the problem is NP-complete. An O(N) time
1/2-approximation algorithm is known to exist [2]. This
algorithm can be modified to run in O(n2) time by per-
forming a line sweep from bottom to top [8].

For polygons without holes there exists a PTAS [7]

that runs in O(k2N
1
ε2 /ε2) time, where k is the size of the

square (in our case k = 2) and ε > 0. The algorithm has
an error ratio of at most (1+ε)2. A faster PTAS [3] runs

in O(N̂ log N̂ + N̂∆
1
ε−1) time, where N̂ is the number

of possible locations to place squares, ∆ is the number
of squares any point in the 2-dimensional plane can be
in (in our case ∆ = 4), and ε > 0. The algorithm has
an error ratio of at most 1 + ε.

For a few classes of polygons, namely staircases, pyra-
mids, and Manhattan skyline polygons, the problem is
solvable in O(n) time [6]. These classes of polygons
can be solved by filling them from bottom to top with
squares placed in the corners.

Results. We describe a different approach: instead
of placing squares, we determine where not to place
squares. This allows us to solve a number of classes of
polygons in O(n2) time. Our polygon classes are signifi-
cantly larger than those previously solvable and include
staircases, pyramids, and Manhattan skyline polygons.

In Section 2 we present some observations on parts of
polygons that cannot contain squares. In Section 3 we
consider the intersection graph of all possible squares
and we present a number of rules to reduce this graph.
In Section 4 we describe a class of polygons that can
be solved based on these reduction rules. In Section 5
we describe a second class of polygons which can be
solved more efficiently, without considering the inter-
section graph. Neither of these polygons classes is con-
tained in the other. Additional details and extensions
can be found in the Master’s thesis of the first author [8].

2 Tight Corridors and Tails

The dual graph of a grid polygon P has a vertex for
each cell of P and an edge between two vertices iff their
corresponding cells share a border. A tight corridor of
P corresponds to a path in the dual graph, where each
vertex has degree at most 2 and no vertex is part of a
4-cycle. A tail is a tight corridor in which at least one
vertex has degree 1. We prove in [8] that no cell of a
tight corridor can be part of a square. We also show
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how to remove these cells in O(n) time. Every solvable
class of polygons can be extended by attaching tails.

3 The Intersection Graph

Instead of placing squares, we determine where not to
place squares. For this, we use the intersection graph
G = (V,E) of all possible squares (see Fig. 2). Each
square is represented in G by a vertex located at the
position of its center on the grid. Two vertices are con-
nected by an edge iff their corresponding squares over-
lap. Clearly every vertex of G has degree at most 8.
El-Khechen [6] already observed that solving the Max-
imum Independent Set Problem on G results in an op-
timal non-overlapping placement of squares.

v′ v

v1 v2 v3

v4

Figure 2: The intersection graph G.

The number of vertices N̂ of G is upper bounded by
N , the number of cells in P . However, N can be far
larger than N̂ (for example, if P is a single tail). G can

be constructed in O(n log n + N̂) time using a simple
sweepline algorithm.

3.1 Graph Reduction

Placing a square in a corner where both edges of the
polygon P have length at least 2 is known to be op-
timal (for example, placing the square represented by
v′ in Fig. 2). We generalize this result, by noting that
it does not depend on the edges of P , but rather on
the sets of neighbors of the vertices of G. Each of the
neighbors of v′ excludes more vertices from the maxi-
mum independent set than v′ does.

We define the conflict set of a vertex v, denoted by
C(v), as all neighbors of v and v itself:

C(v) = {u | (u, v) ∈ E} ∪ {v}

The conflict set of a vertex changes when one of its
neighbors is removed from G. A vertex v is called re-
movable when there exists a vertex v′, a neighbor of v,

such that C(v′) ⊆ C(v). In other words, the conflict
set of v is a superset of the conflict set of v′. In Fig. 2,
the conflict set of vertex v consists of v1 to v4, v′, and
v itself. The conflict set of v′ consists of v1, v2, v, and
v′. Since C(v′) ⊆ C(v), v is removable.

Lemma 1 Removing a removable vertex v does not af-
fect optimality.

We refer to removing a removable vertex as the su-
perset rule. Each vertex has degree at most 8, so we can
check in constant time whether a vertex is removable.
Since removing vertices from G changes the conflict set
of neighboring vertices, vertices that were not removable
at first can become removable later.

Next, we take a closer look at which vertices are af-
fected when a removable vertex is removed. We already
saw that only the neighbors of a removed vertex and
their neighbors can become removable. A removable
vertex v′ remains removable when a removable vertex v
is removed, unless C(v′) = C(v).

Lemma 2 Given two removable vertices v and v′ with
C(v′) 6= C(v), v′ remains removable after the removal
of v.

To efficiently remove all removable vertices, we main-
tain them in a doubly-linked list L. A vertex can be
marked as removable and it stores a pointer to its lo-
cation in L. At each step, we remove the first vertex
in L from G and update its neighbors and the neigh-
bors of its neighbors: unmarked vertices that become
removable are added to L and marked vertices that be-
come not removable are removed from L. This way, all
removable vertices can be removed in O(N̂) time.

3.2 Cycles

Next, we discuss cycles of degree 2 vertices which might
also contains some higher degree vertices. If a cycle C
consists only of degree 2 vertices (i.e. it is not connected
to the rest of G), the optimal solution contains exactly
b|C|/2c vertices. For the optimality of the solution it
does not matter which vertices we pick, as long as no
two vertices are neighbors.

If a cycle C is connected to the rest of the graph G\C,
we can deal only with two special cases (see Fig. 3): (a)
G \C is connected to a single vertex of C and (b) G \C
is connected to two vertices go C, forming a triangle. If
G\C is connected to only one vertex of C, we can remove
that vertex, since for any pair of neighbors we can pick
only one vertex. Note that there may be multiple edges
between G\C and v, as long as no other vertices of C are
connected to G \C. Such single connecting vertices can
also be avoided when there are multiple such vertices in
C, as long as there is an odd number of vertices of C
between them.
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Figure 3: Cycles that can be removed.

Next, we look at connections that form triangles. In
Fig. 3 (b) vertices v1, v2, and v3 form a triangle and
vertices v2 and v3 are part of the cycle C. If C has
odd length, at some point in C, there must be two ad-
jacent vertices that are both not part of the solution.
In this case, these vertices can be chosen to be v2 and
v3, without losing optimality.

If C has even length, we cannot apply this method,
since there are no two adjacent vertices that are both
not part of the solution. We note, however, that since
vertices v1, v2, and v3 form a triangle, picking any of
them excludes the other two from the solution. Now,
assume we pick vertex v1 to be part of the solution. This
excludes both v2 and v3. Since C has even length, there
exists an optimal solution such that one of the neighbors
of v2 and v3 is not used. Without loss of generality, we
assume that the remaining neighbor of v2 (i.e. not v1
or v3) is not used. Now vertex v1 can be replaced by
vertex v2, without violating the property that no two
adjacent vertices are part of the solution. Thus, vertex
v1 can be removed without affecting the optimality of
the solution. Moreover, since v1 may be connected to
other vertices in G, not picking it is potentially better.

3.3 Diamonds

A diamond is a rectangle having one cell removed from
each of its corners. Its corresponding graph is a rectan-
gular graph having a vertex removed from each corner
(see Fig. 4). If the height of a diamond is odd, the di-
amond can be removed using the superset rule and the
rules for removing cycles.

We now look at a special case: a diamond consisting
of four vertices having other parts of the graph attached

Figure 4: The graph of a diamond.

to two opposite vertices. This configuration is shown in
Fig. 5: vertices v2, v3, v5, and v6 form a diamond and
the other parts of the graph are attached to two opposite
vertices v2 and v6. The rule states that v3 and v5 can
always be picked without affecting optimality. In other
words, v2, v4, and v6 can always be removed. For this
rule to be applicable v4 may be present, but this is not
required. Also, there may be other vertices connected
to v2 to v6, as long as they are not connected to v3, v4,
and v5. It is also possible that there are only vertices
connected to v2 (or only to v6).

v1 v2 v4 v6 v7

v3

v5

Figure 5: The configuration of a diamond.

Lemma 3 Picking vertices v3 and v5 from a diamond
is optimal.

Note that we do not require that there is only one
vertex on the chains between v2 and v6. We require
only that there is an odd number of vertices on these
chains. Hence, we can generalize the rule to include
every diamond that satisfies this property.

3.4 Remarks

The reduction rules described in this section require that
specific configurations are found in the graph G. All
configurations can be found in O(N̂) time. Since re-
solving any configuration removes vertices, these rules
can be applied at most a linear (in N̂) number of times,
hence applying all rules (including the superset rule)

until no rule is applicable takes O(N̂2) time.
Finally, note that no rule uses the fact that the poly-

gon P is simple. Hence all reduction rules can also be
applied to graphs constructed from polygons with holes.

4 Polygons Solvable by Graph Reduction

In the previous section, we described a number of re-
duction rules. However, we did not relate these rules
directly to polygons. In this section we characterize the
polygons that can be solved using these rules.

To construct a solvable polygon, we start out with
one of four classes of initial polygons: The first class is
the class of staircases, pyramids, and Manhattan sky-
line polygons. The second class consists of polygons
constructed by stacking the blocks shown in Fig. 6 (see
Fig. 7 (a)). The blocks may be mirrored horizontally.
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Figure 6: The various blocks. Each block starts out as an even height rectangle. Blocks (b) and (f) are required to
have odd width. (a) A rectangle. (b)–(f) A single cell is removed from: (b) the lower right corner, (c) the upper
right corner, (d) the upper and lower right corners, (e) the upper left and right corners, (f) the upper and lower right
corners and an odd height column is removed from the upper left corner.

Note that it is allowed to stack multiple blocks next to
each other on top of a wider block and that it is al-
lowed to stack a wider block on top of multiple blocks.
The third class consists of diamonds: rectangles having
a single cell removed from each corner. The final class
is the class of polygons constructed by starting with an
arbitrary rectangle and attaching rectangles to its cor-
ners (see Fig. 7 (b)). Note that the attached rectangles
may not cover an entire side of a rectangle and no two
rectangles may be attached to the same corner.

Initial polygons of even height are non-cascading poly-
gons. A polygon is called non-cascading if its optimal
placement can be constructed regardless of the polygons
that are connected to it. In other words, its optimal
solution does not influence and is not influenced by the
polygons connected to it. We have to restrict the type of
possible connections for some non-cascading initial poly-
gons in order for them to remain non-cascading. In the
case of non-cascading staircases, pyramids, and Man-
hattan skyline polygons, a polygon may be attached to
any horizontal edge whose height (measured from the
base) is even. For non-cascading diamonds, the horizon-
tal edge to which the other polygon is connected may
not be covered entirely unless this edge has length 2.

(a) (b)

Figure 7: Constructing a polygon by: (a) stacking
blocks, (b) attaching rectangles to the corners of rect-
angles.

Non-cascading polygons can be attached to any con-
structible polygon.

Rectangles of even height and width are special case
of non-cascading polygons. Such rectangles can be at-
tached anywhere. In particular, they can be attached to
corners (see Fig. 8). The height and width of the rect-
angle need not be greater than the length of the edges of
the corner, hence any corner can be extended this way.

Figure 8: A corner exten-
sion.

Figure 9: A universal
connector polygon.

We define an universal connector polygon to be a
polygon that can be solved without affecting the con-
nected polygons in any way. Any two polygons may be
connected by means of a universal connector polygon.
We distinguish two types of universal connector poly-
gons. The first type is the tight corridor described in
Section 2. Two polygons connected by a tight corri-
dor correspond to two disconnected graphs that can be
solved individually. The second type is a variation on
the diamond: an even width rectangle of height 4 hav-
ing even width rows of cells removed from each corner.
The rectangles that are removed from the left corners
must have the same width. The same must hold for the
rectangles that are removed from the right corners (see
Fig. 9). Universal connector polygons can be extended
by attaching non-cascading polygons to any edge or by
attaching even height and width rectangles to corners.

Any polygon can be extended by attaching tails to it
(see Section 2).

Theorem 4 Every polygon constructed by the con-
struction scheme of Section 4 can be solved using the
graph reduction rules.

The class of polygons constructible using the above
construction scheme is significantly larger than the class
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Figure 10: A polygon constructed using the construc-
tion scheme. Dashed lines represent the borders of the
building blocks.

of previously solvable polygons. An example polygon is
shown in Fig. 10.

5 Polygons Solvable in Quadratic Time

In the previous section, we presented a construction
scheme for polygons solvable in time polynomial in N̂
(the number of possible square locations) using the
graph reduction method. In this section, we present
a different class of polygons which does not require the
construction of the intersection graph; the constructed
polygons can be solved in O(n2) time. Though this new
class has some overlap with the class of the previous
section, neither is contained in the other.

The new construction scheme is very similar to the
previous scheme. There are, however, some differences.
Diamonds are replaced by diamonds having an arbitrary
number of steps and the non-cascading diamonds are
replaced by even height diamonds having an arbitrary
number of steps. Furthermore, the extension of rect-
angles placed in corners has an additional requirement:
the height and width of the rectangle may not be equal
to the length of the edges of the corner.

To solve these polygons, we find specific configura-
tions of edges in the polygon. These configurations will
correspond to (parts of) the polygons constructed using
the construction scheme. Since we also need to know
which edge of the polygon is closest to another edge, we
first define the distance between two horizontal edges
(two vertical edges are treated analogously). Since we
do not need the distance between a horizontal and a
vertical edge, we define this to be infinite.

We define the slab of an edge e, denoted by slab(e), as
the region bounded by e and two half-lines orthogonal
to e starting at the two endpoints of e, such that the
interior of the polygon intersects slab(e) in the imme-
diate neighborhood of e. A slab contains an edge f if
one of the endpoints of f lies in the interior or on the
boundary of the slab or f intersects the slab.

Given two horizontal edges e and f of a rectilinear

grid polygon, the distance between these two edges is
defined to be infinite when slab(e) does not contain f
and slab(f) does not contain e, or when the two edges
are connected by means of a single vertical edge. Oth-
erwise, the distance is the difference between their re-
spective y-coordinates.

We now define the edge e closest to another edge f as
the edge that has the smallest distance to edge f . An
edge can have multiple closest edges: if multiple edges
have the smallest distance to an edge e, they are all
part of the set of closest edges of e. The closest edges
are needed to efficiently check whether we need to split
the polygon during the removal of configurations.

The configurations are shown in Fig. 11. Here we de-
scribe two of these configurations in detail and analyze
the number of squares that can be placed when remov-
ing them. Full details can be found in [8]. Some con-
figurations can be solved by using other configurations
in combination with tail removal. These configurations
are shown to make it easier to see the correlation be-
tween the construction scheme and the configurations.
When describing the configurations, we say that certain
rectangles do not contain edges in their interior. Here a
rectangle contains an edge if (a part of) the edge lies in
the interior of the rectangle. Edges lying on the bound-
ary of the rectangle are allowed. All configurations may
be mirrored and rotated.

Configuration (a): A rectangular configuration C.
The rectangle defined by the horizontal edge and the
shortest vertical edge does not contain any edges of the
polygon. The height h of C is the length of the shortest
of the two vertical edges and the width w of C is the
length of the horizontal edge. The height h needs to
be strictly greater than 1. When C is removed, we add
bh/2c · bw/2c squares. Note that if the shortest vertical
edge has odd length, C is not removed completely: it is
reduced to a single row.

even
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(f) (g)
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Figure 11: The configurations.
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Configuration (l): A universal connector configura-
tion C. The two vertical edges have the same even
length l and the y-coordinates of their endpoints are
the same. The distance between the two edges is 4.
Both edges are connected to two edges of length 1 that
are directed towards the opposite edge. The rectangle
defined by the two vertical edges does not contain any
edges of the polygon. When C is removed, we add l
squares.

Next, we sketch how to use the configurations shown
in Fig. 11 to solve the polygons constructed by the con-
struction scheme. Staircases, pyramids, and Manhattan
skyline polygons can be solved by repeatedly using con-
figurations (a) and (g) on the base and the two vertical
edges connected to it. The blocks shown in Fig. 6 can be
solved by using the corresponding configurations: block
(a) can be solved using configuration (a), block (b) us-
ing configuration (b), and so on. Diamonds having an
arbitrary number of steps can be solved by using con-
figuration (h). Polygons constructed by starting with
an arbitrary rectangle and attaching rectangles to its
corners can be solved by repeatedly using configuration
(a) in combination with tail removal. For details see [8].

Since non-cascading polygons are special cases of the
above polygons, the configurations used to solve them
are the same. The even height and width rectangles
that can be placed in corners can be solved using con-
figurations (i), (j), and (k), depending on whether the
edges of the corner are longer or shorter than the edges
of the rectangle.

The tight corridors that can be used as universal con-
nectors will be removed before the algorithm is applied
to the polygon. Tight corridors formed during the re-
moval of configurations will be removed as soon as they
are formed. The diamonds that are used as universal
connector polygons can be solved using configuration
(l). Finally, tails will also be removed before and while
the algorithm is applied to the polygon.

Solving the polygons constructed by this scheme now
becomes quite simple: we find one of the configurations,
fill it, and continue with the remainder of the polygon.
To keep the algorithm this simple, we need to ensure
that the remaining part of the polygon is described by
its edges. Hence we remove all tight corridors (causing
the polygon to be split) and tails after each step.

Lemma 5 The polygon can be split at most n/4 − 1
times.

Lemma 6 A polygon can be split in O(n) time, while
updating the closest edges.

Lemma 7 While solving the polygon, configurations
that do not reduce the complexity of the polygon are used
at most a linear number of times.

From Lemmas 5, 6, and 7 it follows that the configu-
ration removal algorithm runs in O(n2) time.

Theorem 8 Every polygon constructed by the con-
struction scheme of Section 5 can be solved in O(n2)
time using the configuration removal algorithm.

6 Conclusion and Open Problems

We described a number of techniques that can be used
to solve certain instances of the 2×2 simple packing
problem on simple polygons. Our methods significantly
extend the class of polygons for which the 2×2 simple
packing problem is solvable in polynomial time. The
graph reduction technique is polynomial in N̂ and the
configuration removal technique runs in O(n2) time.
Both techniques return the optimal number of squares
for polygons constructed using their respective con-
struction schemes.

The complexity status of the 2×2 simple packing
problem remains open. Nevertheless, it is an interesting
open question if a PTAS that runs in time polynomial
in n (not just polynomial in N̂) exists. Another chal-
lenging problem is to find an exact algorithm for classes
of polygons that do not require construction schemes
to describe them, such as the class of rectilinear convex
simple polygons.
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