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Small Octahedral Systems
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Abstract

We consider set systems that satisfy a certain octahe-
dral parity property. Such systems arise when study-
ing the colourful simplices formed by configurations of
points of in Rd; configurations of low colourful simpli-
cial depth correspond to systems with small cardinality.
This construction can be used to find lower bounds com-
putationally for the minimum colourful simplicial depth
of a configuration, and, for a relaxed version of colourful
depth, provide a simple proof of minimality.

1 Introduction

We are interested in set systems of the following type:
the base set S is partitioned into colours S1,S2, . . .Sm

for some m, and the sets consist of one element from
each Si. In other words, these are m-uniform hyper-
graphs where each hyperedge has a unique intersection
with each colour Si, we will sometimes refer to the sets
that belong to a given system as edges. We call a subset
of S colourful if it contains at most one point from each
Si. Thus the edges of any system are colourful. When a
colourful set has a point from Si, we will call this point
the ith coordinate of the set.
We call a colourful set of m − 1 points which misses

Si an î-transversal, and call any pair of disjoint î-
transversal an octahedron. We say that an m-uniform
collection of colourful edges forms an octahedral system
if it satisfies the following property:

Property 1 For any octahedron Ω, the parity of the
set of edges using points from Ω and a fixed point si for
the ith coordinate is the same for all choices of si.

The term octahedron comes from the following geo-
metric motivation. A point p ∈ Rd has simplicial depth
k relative to a set S if it is contained in k closed simplices
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generated by (d+ 1) sets of S. This was introduced by
Liu [21] as a statistical measure of how representative p
is of S, and is a source of challenging problems in com-
putational geometry – see for instance [1], [14] and [22].
More generally, we consider colourful simplicial depth,
where the single set S is replaced by (d + 1) sets, or
colours, S1, . . . ,Sd+1, and the colourful simplices con-
taining p are generated by taking one point from each
set.
From any such colourful configuration, we can form

a system of vectors V where v = (s1, . . . , sd+1) is in
V if and only if the colourful simplex described by v
contains 0. In this context, î-transversals are simply
vectors with the ith coordinate removed, and octahedra
are pairs of disjoint î-transversals. It is a topological fact
that such a system satisfies Property 1, see for instance
the Octahedron Lemma of [4] for a proof. Thus V is an
octahedral system with m = d+ 1. When the points of
an octahedronΩ from V considered as points in Rd form
a cross-polytope, i.e. a d-dimensional octahedron, in the
geometric sense that conv(Ω) is a cross-polytope and
same coloured points are not adjacent in the skeleton
of the polytope, then the even and odd case correspond
to 0 lying inside and outside Ω respectively. Figure 1
illustrates this in a two dimensional case where 0 is at
the centre of a circle that contains points of the three
colours.

Figure 1: Two-dimensional cross-polytopes Ω contain-
ing 0 and not.

It is interesting to get lower bounds for the number of
colourful simplices containing p for given configurations,
for instance satisfying convexity properties as described
in Section 1.1 below. Besides the intrinsic appeal of the
problem, its solution is a bound on the number of so-
lutions to a colourful linear program in the sense of [5]
and [11]. One strategy for establishing this bound is
to show that certain small octahedral systems cannot
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exist. In particular, it leads to two nice combinatorial
questions: what is the smallest non-empty octahedral
system in terms of the number of edges on m (i.e. d+1)
sets of m points, and what is the smallest such system
where every point is contained in some edge. In Sec-
tion 2 we show that the answer to the first question is
m and use this to prove a conjecture about point con-
figurations. The second question suggests a method of
computationally attacking the colourful simplicial depth
problem, see below, at least for small dimension. Some
progress on this is described in Section 3. Finally, in
Section 4 we consider some further questions about oc-
tahedral systems.

1.1 Colourful Simplicial Depth Problems

Consider the colourful configurations described above.
Without loss of generality we assume that p = 0 and
that the points in S ∪ {0} are in general position. If
the convex hulls of the Si’s contain 0 in their interior,
we say that the configuration satisfies the core condi-
tion. Bárány’s Colourful Carathéodory Theorem [3]
shows that the core conditions imply that 0 must be
contained in some colourful simplex. In other words,
we have µ(d) ≥ 1 where µ(d) denotes the minimum
number of colourful simplices drawn from S1, . . . ,Sd+1

that contain 0 for all configurations with the core con-
dition. The sets S1, . . . ,Sd+1 must each contain at least
(d+ 1) points for 0 to be in the interior of their convex
hulls, and since we are minimizing we can assume they
contain no additional points, i.e. that |Si| = d + 1 for
each i.
The quantity µ(d) was investigated in [10], where it

is shown that 2d ≤ µ(d) ≤ d2 + 1, that µ(d) is even for
odd d, and that µ(2) = 5. This paper also conjectures
that µ(d) = d2 + 1 for all d ≥ 1. Subsequently, [4]
verified the conjecture for d = 3 and provided a lower

bound of µ(d) ≥ max(3d,
⌈
d(d+1)

5

⌉
) for d ≥ 3, while

[24] independently provided a lower bound of µ(d) ≥⌊
(d+2)2

4

⌋
, before [12] showed that µ(d) ≥ & (d+1)2

2 '.
A recent generalization of the Colourful Carathéodory

Theorem in [2] and [17] relaxes the condition of 0 be-
ing in the convex hull of each Si to require only that
0 is in the convex hull of Si ∪ Sj for all i and j, and
Si not empty for all i. The analogous quantity µ♦(d),
which denotes the minimum number of colourful sim-
plices drawn from S1, . . . ,Sd+1 that contain 0 ∈ Rd

given that |Si| = d+1 for all i and 0 ∈ Si ∪Sj for each
i (= j, has been investigated in [12] where it is shown
that µ♦(d) ≤ d + 1, µ♦(2) = 3, and µ♦(3) = 4. The
associated octahedral system of (d+1) points in (d+1)
colours satisfies Property 1.

Remark 2 Colourful simplicial depth was introduced
in the context of lower bounds for ordinary simplicial

depth. This problem is quite challenging even in two
dimensions: it has been studied at least since Kártesi
[19]; the bound of 1

27n
3 + O(n2) was established in [6],

but the the construction in that paper of a set of points
meeting this bound needed to be revised, see [7]. For
general d, finding a tight bound remains a challenging
problem. Recently Gromov [16] introduced a topological
method which among other things improves the lower
bound. See also [18].

1.2 Octahedral Problems

The strong version of Bárány’s Colourful Carathéodory
Theorem says that when a colourful configuration sat-
isfies the core condition that every point in S is part
of some colourful simplex. Thus the octahedral system
generated by such a colourful configuration must satisfy:

Property 3 Every element of {1, 2, . . . , d+1} appears
as the ith coordinate of some v ∈ V for each i ∈
{1, 2, . . . , d+ 1}.

In particular, any colourful configuration satisfying
the core condition must generate a system V satisfy-
ing Property 1 and Property 3. For example, the low
colourful simplicial depth configurations of [10] gener-
ate such a system with (d + 1) sets of (d + 1) points,
containing (d2 + 1) vectors. We define ν(d) to be the
minimum number of vectors in an octahedral system of
(d+ 1) points in (d+ 1) colours satisfying Properties 1
and 3, and ν♦(d) to be the minimum number of vectors
of a similar system satisfying Property 1 only. Then we
have ν(d) ≤ µ(d) ≤ d2 + 1 and ν♦(d) ≤ µ♦(d) ≤ d + 1.
In Section 2 we show that ν♦(d) = µ♦(d) = d + 1. In
Section 3 we show that ν(d) = d2 + 1 for d = 2, 3, and
conjecture that it holds for all d. In particular, com-
putation of ν(d) for small d gives us a finite procedure
that can prove lower bounds for µ(d).

Remark 4 In [10] it was observed that µ(d) is even for
odd d. Similarly it is easy to see that when m = d + 1
is even, all octahedral systems have an even number of
vectors. In particular, both ν(d) and ν♦(d) are even for
odd d.

2 Proof that µ♦(d) = d+ 1

A construction in [12] shows that ν♦(d) ≤ µ♦(d) ≤ d+1
for d ≥ 2. In fact, in this section we show that any non-
empty octahedral system of (d+1) sets of (d+1) points
has at least (d + 1) vectors, and hence that ν♦(d) =
µ♦(d) = d+ 1.

Proposition 5 For any d ≥ 2, we have ν♦(d) =
µ♦(d) = d+ 1.
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Proof. Assume that there is an octahedron Ω consist-
ing of two î-transversals and a point s ∈ Si such that
there are an odd number of edges using points from Ω
and s. Then it follows immediately from Property 1 that
there is at least one edge that uses points from Ω and
any point in Si. Therefore ν♦(d) ≥ d+1 as |Si| = d+1.
Assume then that there exists no such octahedron

with odd parity, but that the system contains some edge
E. We view E as being formed by a î-transversal T
and a point s ∈ Si and generate edges in the following
way. Consider the d disjoint î-transversals Tj for j =
1, 2, . . . , d generated from the remaining points, and the
d octahedra Ω1,Ω2, . . . ,Ωd given by pairing Tj with T
for j = 1, 2, . . . , d. For each j, besides E, there is at
least one other edge that uses s and the points from Ωj

due to the even parity. Therefore ν♦(d) ≥ d+ 1.
In both cases ν♦(d) ≥ d + 1. Thus we have ν♦(d) =

µ♦(d) = d+ 1 as ν♦(d) ≤ µ♦(d) ≤ d+ 1. !

In Figure 2 we illustrate the 2-dimensional configu-
ration described in [12] where 0 ∈ conv(Si ∪ Sj) for all
i (= j and is contained in exactly 3 colourful simplices.
In general, the construction is to place one point of each

Figure 2: Minimal 2-dimensional configuration for the
relaxed core condition.

of the first d colours below the equator in such a way
that 0 ∈ conv(Si). Then the conditions are satisfied
regardless of the position of the points of Sd+1. These
points are placed near the north pole in order that each
one generates a unique colourful simplex containing 0:
the simplex is formed using the d points below the equa-
tor.
We remark that if we remove the condition that |Si| ≥

d + 1 for each i then it is easy to modify the proof to
show that 0 lies in at least mini |Si| colourful simplices,
and the example can be modified to show that this is
tight.

3 Computational Approach

For a given d, the computational approach consists of
ruling out a given value k for ν(d) via an exhaustive
computer search showing that no system V of size k
can satisfy Property 3 and Property 1. This approach
was used in [12] on a laptop to show in a few seconds

that ν(2) > 3 and in a few hours that ν(3) > 8. In
other words, this approach verifies computationally that
ν(2) = µ(2) = 5 and ν(3) = µ(3) = 10 – using the fact
that ν(3) must be even, see Remark 4. Instances of
higher dimensions are currently under computation.
In this section we propose ways to normalize the vec-

tor system which significantly speed up the enumera-
tion. We also present a constraint programming formu-
lation of the problem.

3.1 Normalization of vector system

Recolouring and relabelling of the points does not
change the combinatorics of the point configuration.
This symmetry will result in many duplicates in enu-
meration. In order to speed up the enumeration of vec-
tor systems for ν(d) we normalize the vector system in
the following ways.

(i) First, since the vector system V is not empty, we
can assume vector (0, 0, . . . , 0) ∈ V .

(ii) If there is a covering octahedron, i.e. one that gen-
erates an odd number of vectors for each point
of the excluded colour, we can take the excluded
colour to be the final one, an octahedron of the
system to be {(0, . . . , 0), (1, . . . , 1)}, with the la-
bellings of the points of colours 1, . . . , d chosen so
that (i) is satisfied.

A Python routine that searches for small octahedral sys-
tems using these normalization is available at [25].

3.2 Pivoting

We may also be able to take advantage of the follow-
ing pivoting structure of octahedral systems. Given a
particular î-transversal T , we can pivot from the current
octahedral system Ω to an adjacent one Ω′ by removing
all vectors containing T and replacing them with vec-
tors T ∪ {s} for each s ∈ Si such that T ∪ {s} was not
in Ω.
If we have a transversal T which forms vectors with

more than half the points of colour i, then pivoting on
T will reduce the number of vectors in the system, al-
though it may also break Property 3. We remark that
pivoting is also seen in the setting of colourful simpli-
cial, it corresponds to moving a point of colour i across
a hyperplane defined by and î-transversal.

3.3 Constraint programming approach

The other computational approach for ν(d) is to exploit
the fact that there is a sphere covering octahedron for
each missing colour and model the search for a valid
vector system as a constraint programming problem.
We can start with the following collection of vectors

V◦. Each block of (d+1) vectors represents the simplices
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derived from a sphere covering octahedron for a missing
colour.

(1, x2
1,1, x

3
1,1, . . . , x

d+1
1,1 ), (2, x2

1,2, x
3
1,2, . . . , x

d+1
1,2 ), . . . ,

(d+ 1, x2
1,d+1, x

3
1,d+1, . . . , x

d+1
1,d+1);

(x1
2,1, 1, x

3
2,1, . . . , x

d+1
3,1 ) , (x1

2,2, 2, x
3
2,2, . . . , x

d+1
2,2 ), . . . ,

(x1
2,d+1, d+ 1, x3

2,d+1, . . . , x
d+1
2,d+1);

. . .
(x1

d+1,1, . . . , x
d
d+1,1, 1), (x

1
d+1,2, . . . , x

d
d+1,2, 2), . . . ,

(x1
d+1,d+1, . . . , x

d
d+1,d+1, d+ 1).

The domain of each variable is {1, 2, . . . , d+1}. Then
we have a constraint programming satisfaction problem:
Given a value k, find an assignment of values to the vari-
ables such that |V◦| ≤ k and the following constraints
are satisfied:

(1) xi
1,1 = 1 for all i and xi

1,j ∈ {1, 2} for all i and
j ≥ 2. These constraints are derived from the nor-
malization of the vector system.

(2) |{xi
j,1, x

i
j,2, . . . , x

i
j,d+1}| ≤ 2 for all i and j because

they are from an octahedron.

(3) Constraints corresponding to Property 1.

If no solution is found, then ν(d) (= k.

4 Conclusions and remarks

Octahedral systems appear to be interesting combinato-
rial objects. Using the observation that colourful point
configurations generate small octahedral systems, we
propose a computational approach to establishing lower
bounds for colourful simplicial depth. We can ask sev-
eral other questions about octahedral systems.
We remark that the maximum cardinality octahedral

system is the set of all possible edges; if we have m
(i.e. d+1) sets of cardinality m it has size mm. As with
the other configurations discussed in this paper, it can
be realized as arising from a colourful configuration of
points in Rd, in this case the one that places the sets
S1, . . .Sd+1 close to vertices v1, . . . vd+1 respectively of
a regular simplex containing 0.

Question 6 Can all octahedral systems of (d+1) sets of
(d+1) points be obtained as the vectors of point config-
urations in Rd, and can all such configurations covering
all points be obtained as the vectors of configurations
satisfying a core condition?

Question 7 How many octahedral systems and cover-
ing octahedral systems are there for a given m? We
remark that for m = 1 we have 2 systems, 1 of which is
covering, and for m = 2 we have 8 and 3; if we count
only up to isomorphism these numbers are 4 and 2 re-
spectively.

Question 8 Finally, it would be interesting to explore
the pivoting structure of octahedral systems by under-
stand its adjacency graph. For instance, we can ask
about connectedness, i.e. can we get to any octahedral
system from the empty octahedral system via a sequence
of pivots? If so, how long must that sequence be?

We conclude by mentioning that many aspects of
colourful simplices are just beginning to be explored.
For instance, the combinatorial complexity of a system
of colour simplices is anaylsed in [23]. As far as we know
the algorithmic question of computing colourful simpli-
cial depth is untouched, even for d = 2 where several
interesting algorithms for computing the monochrome
simplicial depth have been developed, see for instance
[1], [8], [9], [13], [15] and [20].
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