
CCCG 2011, Toronto ON, August 10–12, 2011

Edge Unfoldings of Platonic Solids Never Overlap

Takashi Horiyama∗ Wataru Shoji∗

Abstract

Is every edge unfolding of every Platonic solid overlap-
free? The answer is yes. In other words, if we develop
a Platonic solid by cutting along its edges, we always
obtain a flat nonoverlapping simple polygon.
We also give self-overlapping general unfoldings of

Platonic solids other than the tetrahedron (i.e., a cube,
an octahedron, a dodecahedron, and an icosahedron),
and edge unfoldings of some Archimedean solids: a
truncated icosahedron, a truncated dodecahedron, a
rhombicosidodecahedron, and a truncated icosidodec-
ahedron.

1 Introduction

“Does every convex polyhedron have a nonoverlapping
edge unfolding?” An unfolding (also called a general
unfolding) of a polyhedron is a simple polygon obtained
by cutting the surface of the polyhedron and unfold-
ing it into a plane. For an edge unfolding, only cutting
along the edges is allowed. The origin of unfoldings of a
polyhedron goes back to the 16th century: In 1525, Al-
brecht Dürer, a painter and a mathematician, published
a book entitled “Unterweysung der Messung mit dem
Zirkel un Richtscheyt in Linien Ebnen uhnd Gantzen
Corporen” [11]. In this book, he gave edge unfoldings
of Platonic solids (also called regular convex polyhedra)
and Archimedean solids (also called semi-regular convex
polyhedra). There is no evidence that Dürer was aware
of the question, but he seems to have some insight to the
question based on his unfoldings [10]. The first explicit
statement was given by Shephard in 1975 [25].
Although it was believed that every edge unfolding of

a convex polyhedron never overlaps, some unfortunate
cut may lead to overlapping unfoldings [9, 10, 20, 22].
If we relax the restriction of convexity, there exist non-
convex polyhedra whose every edge unfolding is self-
overlapping [4, 12]. If we allow general unfolding, there
are two techniques for unfolding any convex polyhedron
to a simple polygon [3, 21, 24], i.e., any convex poly-
hedron has at least one general unfolding. In [23], the
probability of overlap is investigated for a random un-
folding of a random polyhedron constructed using ran-
dom points on a sphere.

∗Graduate School of Science and Engineering, Saitama

University, horiyama@al.ics.saitama-u.ac.jp, s10mm309@mail

.saitama-u.ac.jp.

a
a

(a) (b) (c) (d)

Figure 1: Overlapping general unfoldings of a cube.

aa

a
a

a a

(a) (b) (c)

Figure 2: Overlapping general unfoldings of an octahe-
dron, a dodecahedron, and an icosahedron.

In this paper, we consider the problem from another
point of view. What happens if our polyhedron is more
restricted and has a regular structure? “Are there any
overlapping general unfoldings for Platonic solids?” Al-
though this seems to be a näıve question at a first glance,
we have the following two interesting observations with
slightly relaxed conditions.
First, let us consider the case with general unfold-

ing. As for a tetrahedron, any unfolding is a funda-
mental domain of tiling [2], i.e., any unfolding can tile
the plane. This statement implicitly says that any gen-
eral unfolding never overlaps. Surprisingly, for other
Platonic solids, we found overlapping unfoldings: Fig-
ures 1 (a) and (b) are unfoldings of a cube that overlap
in a point and a line, respectively. If we cut along the
dotted line in Figure 1 (c), and glue the edges labeled
a, we obtain an overlapping unfolding in Figure 1 (d).
(Gray hatch indicates the overlap.) We can find similar
overlapping unfoldings for an octahedron, a dodecahe-
dron, and an icosahedron, respectively, in Figure 2.
Next, let us consider the case with Archimedean

solids. It is known that a snub dodecahedron has an
overlapping edge unfolding [9]. We also found overlap-
ping edge unfoldings of a truncated icosahedron, a trun-
cated dodecahedron, a rhombicosidodecahedron, and a
truncated icosidodecahedron. By cutting along the bold
lines of the polyhedra in Figure 3, we obtain their over-
lapping edge unfoldings.
As a result of the above observations, we will focus on

the case for edge unfoldings: “Is every edge unfolding



23rd Canadian Conference on Computational Geometry, 2011

of every Platonic solid overlap-free?” In other words,
“Are there any overlapping edge unfoldings for Platonic
solids?” As for a tetrahedron, a cube, and an octa-
hedron, they have 2, 11, and 11 edge unfoldings [15],
respectively, and we can check all of them are overlap-
free by drawing them one by one. For a long time, it
was believed that the same situation holds for a dodeca-
hedron and an icosahedron. We solve this problem and
say that it is correct.

Theorem 1 (Main result) If we unfold a Platonic
solid by cutting along its edges, we always obtain a flat
nonoverlapping simple polygon.

We solve the problem by enumerating all edge unfold-
ings, and check whether they are overlapping or not. It
is known that a dodecahedron and an icosahedron have
43,380 edge unfoldings [6, 13]. Note that they are dual
to each other. Our contribution is to strengthen this
result by making a catalogue of edge unfoldings for Pla-
tonic solids. For each pair of non-neighboring faces in
the unfoldings, we check whether their circumscribed
circles overlap or not. Since there are no overlap, we
confirm the claim that has been believed for a long time.
Our contribution also includes a proposal of enumera-

tion algorithms by binary decision diagrams (BDDs) [1,
7] for solving problems in computational geometry. A
BDD is a directed acyclic graph representing a Boolean
function, and can be considered as a variant of a deci-
sion tree. By restricting the order of variable appear-
ance and by sharing isomorphic subgraphs, BDDs have
the following useful properties: (1) When an ordering
of variables is specified, a BDD has the unique reduced
canonical form for each Boolean function. (2) Many
Boolean functions appearing in practice can be com-
pactly represented. (3) When a BDD is given, satisfia-
bility and tautology of the represented function can be
easily checked in constant time. (4) There are efficient
algorithms for many other Boolean operations on BDDs.
As a result of these properties, BDDs (and its variants)
are used for various practical applications, especially in
computer-aided design and verification of digital sys-
tems (see e.g., [8, 17, 26]). Recently, BDDs are widely
used in various fields (see e.g., [14, 19]). Knuth devoted
notable space in “The Art of Computer Programming”
with BDDs [16]. BDDs are regarded as a succinct data
structure with efficient manipulation algorithms.
The rest of this paper is organized as follows. The

next section gives fundamental concepts on BDDs. We
propose algorithms for enumerating edge unfoldings and
checking whether they are overlap-free or not in Sec-
tion 3, and their results are given in Sections 4.

2 Binary Decision Diagrams

A binary decision diagram (BDD) is a directed acyclic
graph that represents a Boolean function. It has two

(a) (b) (c) (d)

Figure 3: Overlapping unfoldings of a truncated icosa-
hedron, a truncated dodecahedron, a rhombicosidodec-
ahedron, and a truncated icosidodecahedron.

sink nodes 0 and 1, called the 0-node and the 1-node,
respectively (which are together called the constant
nodes). Other nodes are called variable nodes, and
each variable node v is labeled by one of the variables
x1, x2, . . . , xn. Let var (v) denote the label of node v.
Each variable node has exactly two outgoing edges,
called 0-edge and 1-edge, respectively. One of the vari-
able nodes becomes the unique source node, which is
called the root node. Let X = {x1, x2, . . . , xn} de-
note the set of n variables. A variable ordering is a to-
tal ordering (xπ(n), xπ(n−1), . . . , xπ(1)), associated with
each BDD, where π is a permutation {1, 2, . . . , n} →
{1, 2, . . . , n}. The level of a variable xπ(i) is defined to
be i. Similarly, the level of a node v is defined by its
label; if node v has label xπ(i), its level is defined to
be i. That is, the root node is in level n and has label
xπ(n), the nodes in level n− 1 have label xπ(n−1) and so
on. The level of the constant nodes is defined to be 0.
On every path from the root node to a constant node
in an BDD, each variable appears at most once in the
decreasing order of their levels. The size of a BDD is
the number of nodes in it.
Every node v of a BDD represents a Boolean function

fv, defined by the subgraph consisting of those edges
and nodes reachable from v. If node v is a constant
node, fv equals to its label. If node v is a variable
node, fv is defined as var (v)f0-succ(v) ∨ var (v)f1-succ(v)
by Shannon’s expansion, where 0-succ(v) and 1-succ(v),
respectively, denote the nodes pointed by the 0-edge and
the 1-edge from node v. The function f represented by
a BDD is the one represented by the root node. When
two nodes u and v in a BDD represent the same func-
tion, and their levels are the same, they are called equiv-
alent. A node whose 0-edge and 1-edge both point to
the same node is called redundant. A BDD which has
no mutually equivalent nodes and no redundant nodes
is reduced. In the following, we assume that all BDDs
are reduced.
An assignment to variables in X can be regarded as

a subset S ⊆ X , and a Boolean function f can be re-
garded as a family F ⊆ 2X . For example, an assign-
ment (x3, x2, x1) = (1, 1, 0) can be regarded as a set



CCCG 2011, Toronto ON, August 10–12, 2011

{x3, x2}, and x1(x2x3∨x2x3) can be regarded as a fam-
ily {{x2, x1}, {x3, x1}}. By using BDDs for represent-
ing families of a set, we can use Boolean operations on
BDDs as a family algebra (see e.g., [16]), or set opera-
tions. Later in this paper, we identify a Boolean func-
tion with its corresponding family F , unless confusion
arises.
For solving a constraint satisfaction problem, all we

have to do is to interpret the restrictions of the problem
as a form of Boolean functions, and represent them by
BDDs. By applying AND operation to the BDDs, we
can obtain the BDD representing the solutions satisfy-
ing all of the restrictions. Once such BDD is obtained,
paths from the root node to the 1-node correspond to
satisfying assignments for its function. Thus, we can
enumerate all solutions by traversing the BDD.

3 Algorithms for Enumerating and Checking Edge

Unfoldings

By the following three steps, we enumerate edge un-
foldings of Platonic solids and check whether they are
overlap-free: (1) We represent the constraints for edge
unfoldings as BDDs. (2) We eliminate mutually equiva-
lent unfoldings. (3) We check whether they are overlap-
free or not. We propose algorithms for these subprob-
lems, which are applicable to any of the Platonic solids.
Later in this paper, we denote n and m as the number
of vertices and edges of a Platonic solid, respectively.

3.1 Enumeration of Edge Unfoldings

We start with the following lemma that gives a good
insight for edge unfoldings.

Lemma 2 (See [10, Lemma 22.1.1]) The cut edges
of an edge unfolding of a convex polyhedron form a span-
ning tree of the 1-skeleton (i.e., the graph formed by the
vertices and the edges) of the polyhedron.

This lemma implies two characterizations of edge un-
foldings, and we propose two algorithms according to
these characterizations. The first characterization is
that a set S of cut edges gives an edge unfolding if and
only if (1) S consists of exactly n− 1 edges and (2) no
edges in S form a cycle. For interpreting these con-
straints as Boolean functions, we use m Boolean vari-
ables x1, x2, . . . , xm representing whether edges are cut
or not: xi = 1 if its corresponding edge ei is cut, other-
wise xi = 0.
Condition (1) is represented as a Boolean function

that outputs 1 if and only if exactly n−1 out of m vari-
ables are 1’s. Such function is one of symmetric func-
tions, whose BDD is of size O(m2) [16]. Figure 4 shows
a BDD of a function that outputs 1 if and only if 3 out
of 6 variables are 1’s. The left-most column of the vari-
able nodes implies that no 1’s have been received yet.

Figure 4: A BDD representing that exactly 3 out of 6
variables are 1’s.

Similarly, the four columns in Figure 4 represent that
we have received no 1’s, one 1, two 1’s, and three 1’s,
respectively. We call this BDD construction procedure
as Choose(n− 1,m).
As for Condition (2), we first construct a BDD for a

set of cycles, and then construct a BDD for prohibiting
cycles. For constructing a BDD for cycles, we begin a
set of edges in a face. Then, we repeat adding a new
face and constructing cycle with the edges of the face.
Figure 5 is the detail of this idea, and Figure 6 illustrates
the first three iterations of Step 2.
In Procedure EnumerateCycles, we use fcycle to de-

note the obtained set of cycles. In Step 1, fcycle is set
to be empty. In the first iteration of Step 2, we pick
face F1, and add a cycle with its edges. (The cycle is
illustrated with a bold line in Figure 6 (a).) The cycle
(more precisely, the set of edges in the cycle) is set to f1.
f2 is empty since fcycle is empty. Now, the family fcycle
contains the cycle of face F1. In the second iteration,
we pick face F2, and its corresponding cycle is set to f1
(see Figure 6 (b)). By combining the edges of F2 with
the already obtained cycle (the cycle in Figure 6 (a)),
we can obtain a new cycle (i.e., the cycle contains the
edges of F1 and F2). More precisely, if edge xj of F2

is not in the already obtained cycle, the edge exists in
the new cycle. Otherwise, the edge does not exist in the
new cycle. By adding the above two cycles, fcycle be-
comes a family of the cycles in Figures 6 (a) and (b). In
the following iterations, Step 2-2 combines the edges of
Fi with already obtained cycles. (Although fcycle may
contain a set of edges that consists of two (or more)
cycles, there is no influence on the next procedure, i.e.,
the construction of a BDD for prohibiting cycles.) In
Step 3, we omit an empty set of edges from fcycle. Note
that the empty set is obtained as fempty :=

∧
xj∈X xj

and the set difference is obtained by fcycle ∧ fempty.
Now, we have a family of cycles and will construct a

BDD for prohibiting cycles. The complement of fcycle
is not sufficient for this task. We should prohibit a
set S (⊆ X) of edges if S is in the monotone exten-
sion [5] of fcycle, where the monotone extension of a
family F of sets is a family {T | there exists a set T ′ ∈
F satisfying T ′ ⊆ T }. Procedure MonotoneExten-
sion in Figure 7 construct a BDD of the monotone



23rd Canadian Conference on Computational Geometry, 2011

Procedure EnumerateCycles

Input: A Polyhedron.
Output: A BDD representing a family of
cycles in the give Polyhedron.

Step 1 (initialize). fcycle := 0.
Step 2 (iterate). For each face Fi, apply
Steps 2-1, 2-2, and 2-3, where Fi has a
set of edges Ei = {xi1 , xi2 , . . . , xik}.
Step 2-1. Construct a BDD of
f1 := (

∧
xj∈Ei

xj) ∧ (
∧

xj∈X\Ei
xj).

Step 2-2. Construct a BDD of f2 which is
obtained from the BDD of fcycle by ex-
changing the roles of 0-edges and 1-edges
of the variable nodes labeled by xj ∈ Ei.
Step 2-3. Construct a BDD of
fcycle := fcycle ∨ f1 ∨ f2.
Step 3. Construct a BDD of
fcycle ∧ (

∨
xj∈X xj), and output it.

Figure 5: Procedure EnumerateCycles to construct a
BDD representing the set of cycles in a polyhedron.

Figure 6: Example of the execution of Step 2 in Proce-
dure EnumerateCycles.

extension of a given BDD. By combining the above
procedures, we can obtain the BDD representing a
family of edge unfoldings: funfolding := Choose(n −

1,m) ∧ MonotoneExtension(EnumerateCycles), i.e., a
set difference Choose(n − 1,m) \ MonotoneExtension
(EnumerateCycles). We call this Algorithm 1-1.
Another characterization of edge unfoldings by

Lemma 2 is as follows: A set S of cut edges leads to
an edge unfolding if and only if (1) S consists of exactly
n − 1 edges and (2) all vertices are connected by the
edges in S. Condition (2) is obtained by a small mod-
ification of the procedure for constructing a BDD of
Hamiltonian cycles for traveling salesman problem [18].
We do not use the restriction that every vertex has ex-
actly two edges, but use the restriction that every vertex
has at least one edge. We call this Procedure Enumer-
ateConnected. By combining this procedure with Pro-

Procedure MonotoneExtension

Input: A BDD G representing f . (v is the
root node of G.)
Output: A BDD representing the monotone
extension of f .

Step 1 (termination). If f = 0 or f = 1,
return G.
Step 2 (recursion). Let G0 and G1 be the
BDDs whose root nodes are 0-succ(v)
and 1-succ(v), respectively. Construct
BDDs Gm0 and Gm1 of
fm0 := MonotoneExtension(G0) and
fm1 := MonotoneExtension(G1).
Step 3 (construction). Construct a BDD
Gm∗ of fm∗ := fm0 ∨ fm1. Then, con-
struct a BDD Gm whose root node vm is
labeled by the same variable with node
v, 0-succ(vm) and 1-succ(vm) are the
root nodes of Gm0 and Gm∗, respec-
tively. Output Gm.

Figure 7: Procedure MonotoneExtension to construct a
BDD representing the monotone extension of f .

cedure Choose, we can obtain the BDD representing a
family of edge unfoldings: funfolding := Choose(n−1,m)
∧ EnumerateConnected. We call this Algorithm 1-2.
The algorithms 1-1 and 1-2 enumerate sets of cut

edges. In this family, different sets of cut edges may give
the same edge unfolding. We omit mutually isomorphic
edge unfoldings by the lexicographic order. For exam-
ple, the two sets of cut edges in Figure 8 give the same
edge unfolding. The sets of cut edges in Figure 8 are
represented by assignments (a) 101101001011 and (b)
110100101101, respectively, where the most significant
(i.e., left most) bit corresponds to x12 and the least sig-
nificant (i.e., right most) bit corresponds to x1. As (b)
is lexicographically larger than (a), we omit (a). We can
implement this process by manipulating BDDs.

3.2 Overlapping Check of Edge Unfoldings

Now, we have a family of edge unfoldings. All we have
to do is to check whether each of them is overlapping-
free or not. As for a tetrahedron, a cube, an octahedron,

Figure 8: Isomorphic edge un-
foldings.

Figure 9: Neighbor-
ing faces.



CCCG 2011, Toronto ON, August 10–12, 2011

and an icosahedron, the faces are equilateral triangles
or squares. Thus, we can place all faces of their edge un-
foldings on an equilateral triangular lattice or a square
lattice. Unfortunately, the faces of a dodecahedron are
pentagons, which cannot make a lattice. In this paper,
we propose an algorithm that can be applied to any
Platonic solid.

Given a set of cut edges, we can obtain the x-
y coordinates for the centers of the faces. For
example, an unfolding of a cube has the cen-
ters on (0, 0), (a cos(32π), a sin(

3
2π)), (a cos 0, a sin 0),

(a cos 0 + a cos(12π), a sin 0 + a sin(12π)), (2a cos 0,
2a sin 0), (a cosπ, a sinπ), where a is a distance between
the centers of two neighboring faces. That is, a =
2 sin

nf−2
2nf

π holds, where nf is the number of vertices

in a face. We assume that the circumscribed circle of a
face has radius 1. We check where the distances between
any two centers are larger than a by Mathematica.

For any pair of faces, we check whether their circum-
scribed circles overlap or not. We do not apply this
check to neighboring faces. We call this Algorithm 3.
We emphasize here that two faces may not overlap even
if their circumscribed circles overlaps. Nevertheless, as
shown in the next section, there exist no overlapping
circumscribed circles for any pair of the faces. In other
words, there are no overlapping faces except for neigh-
boring ones.

Figure 9 illustrates that edges e2, e3 and e6 meet on
a vertex in the original Platonic solid, and that x3 =
x6 = 1 (i.e., e3 and e6 are cut edges) and x2 = 0 (i.e.,
e2 is not a cut edge). If a vertex has k cut edges, its
surrounding faces are separated into k− 1 sets. (Recall
that we have at least one cut edge for every vertex.)
The faces in Figure 9 are separated into {F1, F2} and
{F3}. If two faces are in the same set, they are called
neighboring. In case k = 1, the surrounding faces are in
a set, and thus, any two faces of the set are neighboring.

4 Experimental Results

We implemented the algorithms in Section 3 in pro-
gramming language C. Table 1 gives a comparison be-
tween Algorithms 1-1 and 1-2. The computation time is
measured on Intel(R) Core(TM) 2 Duo E7300 2.66GHz,
2GB memory, Ubuntu 10.04. Both algorithms give the
same number of edge unfoldings: A cube and an octahe-
dron have 384 edge unfoldings, which corresponds to the
counting result in [15]. A dodecahedron and an icosahe-
dron have 5,184,000 edge unfoldings, which corresponds
to the counting result in [13]. Algorithm 1-1 runs faster
than Algorithm 1-2, while both give the same number
of unfoldings.

In Algorithm 1-2, we update the BDDs of F1, . . . , Fn

for n−1 times, and each update of Fi requires n−1 OR
operations. Thus, O(n3) OR operations are required

Table 1: Comparison between Algorithms 1-1 and 1-2.

Algorithm 1-1 Algorithm 1-2

#unfoldings Time
(sec)

#unfoldings Time
(sec)

Tetrahedron 16 0.01 16 0.01
Cube 384 0.01 384 0.01
Octahedron 384 0.01 384 0.01
Dodecahedron 5,184,000 0.01 5,184,000 0.61
Icosahedron 5,184,000 0.02 5,184,000 2.91

Figure 10: Partial list of edge unfoldings of a dodecahe-
dron and an icosahedron.

in total. This is why the computation time grows so
quickly for Algorithm 1-2. By omitting mutually iso-
morphic edge unfoldings, we obtain 2 unfoldings for a
tetrahedron, 11 unfoldings for a cube and an octahe-
dron, and 43,380 unfoldings for a dodecahedron and an
icosahedron, respectively. Figure 10 is a partial list of
enumerated edge unfoldings of a dodecahedron and an
icosahedron.
Table 2 gives the total and average computation time

of Algorithm 3. The average means the average com-
putation time for an edge unfolding. For each edge un-
folding, we have O(F 2) pairs of faces to check whether
they overlap or not, where F is the number of faces.
The results on average computation time are almost
same among all Platonic solids. Algorithm 3 says that,
in any edge unfolding, there is no pair of faces (ex-
cept for neighboring faces) that have overlapping cir-
cumscribed circles. In other words, edge unfoldings of
Platonic solids are simple and nonoverlapping. The list
of all cut-edges for Platonic solids, their corresponding
sets of inequalities in Mathematica format, and a cat-
alogue for edge unfoldings of Platonic solids are shown
in http://www.al.ics.saitama-u.ac.jp/horiyama/

research/unfolding/.

5 Conclusions

We have proposed algorithms making use of BDDs for
enumeration of edge unfoldings, and made a catalogue
of edge unfoldings for Platonic solids. We furthermore
proved that no edge unfolding of a Platonic solid over-
laps. Our algorithms are applicable to Archimedean
solids. It is also interesting to use ZDDs [16, 17] since
it is also suitable for handling sets and families. We



23rd Canadian Conference on Computational Geometry, 2011

Table 2: Computation Time for Algorithm 3.

Total Time Average Time

Tetrahedron 0.51s 0.25s
Cube 2.70s 0.25s
Octahedron 2.67s 0.24s
Dodecahedron 198m 39.16s 0.27s
Icosahedron 200m 55.15s 0.28s

also emphasize here that our approach for making use
of BDDs is applicable to many other problems in com-
putational geometry.

References

[1] S. B. Akers, Binary decision diagrams, IEEE
Trans. Com., C-27:509–516, 1978.

[2] J. Akiyama, Tile-Makers and Semi-Tile-Makers,
Math. Assoc. America, 114:602–609, 2007.

[3] B. Aronov and J. O’Rourke, Nonoverlap of the star
unfolding, Disc. Comp. Geom., 8:219–250, 1992.

[4] T. Biedl, E. D. Demaine, M. L. Demaine, A. Lu-
biw, J. O’Rourke, M. Overmars, S. Robbins, and
S. Whitesides, Unfolding some classes of orthogo-
nal polyhedra, Proc. CCCG, 70–71, 1998.

[5] E. Boros, T. Ibaraki, and K. Makino, Monotone
extensions of Boolean data sets, Proc. ALT, LNCS
1316, 161–175, 1997.

[6] S. Bouzette, and F. Vandamme, The regular Do-
decahedron and Icosahedron unfold in 43380 ways,
Unpublished manuscript.

[7] R. E. Bryant, Graph-based algorithms for Boolean
function manipulation, IEEE Trans. Com., C-35:
677–691, 1986.

[8] J. R. Burch, E. M. Clarke, K. L. McMillan, and D.
L. Dill, Sequential circuit verification using sym-
bolic model checking, Proc. DAC, 46–51, 1990.

[9] H. T. Croft, K. J. Falconer, and R. K. Guy,
Unsolved Problems in Geometry, Springer-Verlag,
Reissue edition, 1995.

[10] E. D. Demaine and J. O’Rourke. Geometric Folding
Algorithms: Linkages, Origami, Polyhedra. Cam-
bridge University Press, 2007.

[11] A. Dürer, Unterweysung der Messung mit dem
Zirkel un Richtscheyt in Linien Ebnen uhnd
Gantzen Corporen, 1525.

[12] B. Grünbaum, Are your polyhedra the same as my
polyhedra?, In B. Aronov, et al. (eds.), Discrete
and Computational Geometry: The Goodman-
Pollack Festschrift, 461–488, Springer, 2003.

[13] C. Hippenmeyer, Die Anzahl der inkongruenten
ebenen Netze eines regulären Ikosaeders, Elem.
Math., 34:61–63, 1979.

[14] T. Horiyama and T. Ibaraki, Reasoning with or-
dered binary decision diagrams, Proc. ISAAC,
LNCS 1969, 120–131, 2000.

[15] M. Jeger, Über die Anzahl der inkongruenten ebe-
nen Netze des Würfels und des regulären Oktaed-
ers, Elemente der Mathematik, 30:73–83, 1975.

[16] D. E. Knuth, The art of computer programming,
vol. 4, fascicle 1, Bitwise tricks & techniques, Bi-
nary decision diagrams, Addison-Wesley, 2009.

[17] S. Minato, “Zero-Suppressed BDDs for Set Manip-
ulation in Combinatorial Problems,” Proc. DAC,
272–277, 1993.

[18] S. Minato, Arithmetic Boolean expression manip-
ulator using BDDs, Formal methods in system de-
sign, 10:221–242, Kluwer Academic, 1997.

[19] S. Minato and H. Arimura, Frequent Pattern
Mining and Knowledge Indexing Basedon Zero-
Suppressed BDDs, Proc. KDID, 152–169, 2006.

[20] J. Mitani and R. Uehara, Polygons Folding to Plu-
ral Incongruent Orthogonal Boxes, Proc. CCCG,
31–34, 2008.

[21] D. M. Mount, On folding shortest paths on convex
polyhedra, Technical Report 1495, Department of
Computer Science, University of Maryland, 1985.

[22] M. Namiki and K. Fukuda, Unfolding 3-
dimensional convex polytopes: A package for
Mathematica 1.2 or 2.0, Mathematica Notebook,
University of Tokyo, 1993.

[23] C. Schevon and J. O’Rourke, A conjecture on
random unfoldings, Technical report JHU-87/20,
Johns Hopkins University, Baltimore, MD, 1987.

[24] M. Sharir and A. Schorr, On shortest paths in poly-
hedral spaces, SIAM J. Comput., 15:193–215, 1986.

[25] G. C. Shephard, Convex polytopes with convex
nets, Math. Proc. Camb. Phil. Soc., 78:389–403,
1975.

[26] I. Wegener, Branching programs and binary deci-
sion diagrams, Monographs on discrete mathemat-
ics and applications, 2000.


