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Helly Numbers of Polyominoes
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Abstract

We define the Helly number of a polyomino P as the
smallest number h such that the h-Helly property holds
for the family of symmetric and translated copies of P
on the integer grid. We prove the following: (i) the only
polyominoes with Helly number 2 are the rectangles, (ii)
there does not exist any polyomino with Helly number
3, (iii) there exist polyminoes of Helly number k for any
k 6= 1, 3.

1 Introduction

Helly’s theorem on convex sets is a cornerstone of dis-
crete geometry, with countless corollaries and exten-
sions in both geometry and combinatorics. For in-
stance, Helly-type properties of convex lattice subsets
and hypergraphs have been studied since the 70’s [3].
On the other hand, the theory of polyominoes, con-
nected subsets of the square lattice Z2, has been devel-
oped since the 50’s with the seminal works of Solomon
Golomb [5] and the famous recreational mathematician
Martin Gardner.

In this paper, we propose a natural definition of the
Helly number of a polyomino P by considering families
of symmetric and translated copies of P . We show that
the only polyominoes with Helly number 2 are rectan-
gles. We prove the surprising fact that there does not
exist any polyomino with Helly number 3. Finally, we
exhibit polyominoes of Helly number k for any k ≥ 4.
Since there cannot be polyominoes of Helly number 1,
this completely characterizes the values of k for which
there exist polyominoes with Helly number k.

Definitions

We define a planar graph G = (Z2, E) that represents
the adjacency relation between grid points. Each vertex
(i, j) is connected to its four neighbors (i, j−1), (i−1, j),
(i + 1, j), and (i, j + 1). A subset of Z2 is connected if
its induced subgraph in G is connected.

Definition 1 A polyomino is a connected finite subset
of Z2.
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Figure 1: Eight possible symmetries of a polyomino.

We often identify the point (i, j) ∈ Z2 with the unit
square [i, i + 1]× [j, j + 1] ⊂ R2. With this transforma-
tion a polyomino becomes an orthogonal polygon whose
edges are on the unit grid. A copy of a polyomino P is
the image of P by the composition of an integer trans-
lation with one of the eight symmetries of the square
(that is, a mirror image and/or a 90, 180, or 270-degree
rotation of P ). Figure 1 shows an example of a poly-
omino and its eight symmetries. The cardinality of a
polyomino will be denoted by |P | (and will be referred
as the size of P ).

Definition 2 For any k ∈ N a polyomino P is called
k-Helly [7] if, for any finite family A of copies of P in
which A1∩. . .∩Ak 6= ∅ for any A1, . . . , Ak ∈ A, we have⋂

A∈AA 6= ∅. The Helly number H(P ) of a polyomino
P is the smallest k ∈ N such that P is k-Helly.

By definition, any polyomino P that is k-Helly will
also be k′-Helly for any k′ ≥ k.

Previous work

A convex lattice set in Zd is the intersection of a convex
set in Rd with the integer grid Zd. In 1973, Doignon
proved that any family of convex lattice sets in Zd is
2d-Helly [3]. A matching lower bound is obtained by
considering all subsets of size 2d − 1 of {0, 1}d. In our
context, this implies that any convex polyomino (i.e. a
polyomino that is the intersection a convex set in R2

with Z2) is 4-Helly. Note that this is different from the
term convex polyomino, which usually refers to polyomi-
noes that are simultaneously row and column convex.
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Fractional Helly numbers of convex lattice subsets
are studied by Bárány and Matousek [1]. Recently,
Golumbic, Lipshteyn, and Stern showed that 1-bend
paths on a grid have Helly number 3 [6]. We note the
environment considered is slightly different, since they
considered that two paths have nonempty intersection
whenever they share an edge.

2 Helly Number up to 4

In this Section we study polyominoes of small Helly
number. Since we are considering finite polyominoes,
it is easy to see that no polyomino can have Helly num-
ber 1. Thus, we first look for polyominoes with Helly
number two.

Definition 3 A rectangle in Z2 is the cartesian product
of two intervals in Z. The bounding box of a polyomino
P is the smallest rectangle in Z2 that contains P .

It is easy to see that rectangles have Helly number 2.
We show that the converse also holds.

Theorem 1 A polyomino has Helly number 2 if and
only if it is a rectangle.

In the following we give a slightly stronger result; we
will show that the only polyominoes that satisfy the 3-
Helly property are rectangles.

Definition 4 A polyomino P has the small empty
quadrant structure if for some copy P ′ of P , there exist
values x1, y1 ∈ Z such that the intersection of P ′ with
the 2×2 rectangle [x1, x1+1]×[y1−1, y1] has cardinality
≥ 3, and P ′ contains no point in {(x, y) : x ≥ x1, y >
y1} (see Figure 2 (a)).

Definition 5 A polyomino P has the big empty quad-
rant structure if for some copy P ′ of P , there exist
values x1, y1, x2, y2 ∈ Z, y1 < y2, x1 < x2 such that
{(x1, y2), (x1, y1), (x2, y1)} ⊂ P ′ and P ′ contains no
point in the upper right quadrant {(x, y) : x > x1, y >
y1} (see Figure 2 (b)).

Given a rectangle [x0, x1]× [y0, y1], its height is y1 −
y0 + 1. Analogously, its width is x1 − x0 + 1. The
height and width of a polyomino P are equal to the
height and width of the smallest enclosing rectangle of
P , respectively.

Lemma 2 Every polyomino P whose height and width
are 2 or more either has the small empty quadrant or
the big empty quadrant structure.

Proof. Observe that if P has either height or width
exactly 1 it must be a rectangle. Hence, in particular,
this Lemma shows that any polyomino (other than some

(x1, y2)

(x1, y1) (x2, y1)

(a) (b)
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∅

∅

Figure 2: Illustration of Lemma 2. In order for a poly-
omino P (of height at least 2) to not have the small
empty quadrant structure (case (a)), P cannot have
two consecutive points on its upper boundary. If this
occurs, we can find a large empty quadrant (case (b)).
The coordinates x1, x2, y1, y2 that generate the big or
small empty quadrant are shown in black.

rectangles), has one of the two structures. Let (x0, y0)
be the point of P highest x-coordinate along the upper
boundary of its bounding box.

We first show that if (x0, y0−1) 6∈ P , then there exists
i ∈ N such that (x0−i+1, y0), (x0−i, y0), (x0−i, y0−1) ∈
P . Proof is as follows: by definition of (x0, y0), we have
that (x0 + 1, y0) 6∈ P , and (x0, y0 + 1) 6∈ P . If we
suppose that (x0, y0−1) 6∈ P , then, in order for P to be
connected, we must have (x0 − 1, y0) ∈ P . By applying
the same argument iteratively on this new point, we
must have that eventually there exists an i such that
both (x0 − i − 1, y0) ∈ P and (x0 − i − 1, y0 − 1) ∈ P ,
otherwise P is a rectangle of height 1.

Therefore, if (x0, y0 − 1) 6∈ P , P has the small empty
quadrant structure. Now assume otherwise and let j
be the smallest integer such that (x0, y0 − j) ∈ P and
(x0, y0 − j − 1) 6∈ P . If the quadrant {(x, y) : x >
x0, y ≥ y0 − j} contains no point of P , then, by the
same argument as in the above claim, there must be a
point of P immediately left of the column x0 between
y0 and y0 − j. In other words, there must be an integer
j′ ∈ [0, j−1] such that |P ∩([x0−1, x0]×[y0−j′−1, y0−
j′])| ≥ 3, and again P has the small empty quadrant
structure.

Finally, if the quadrant {(x, y) : x > x0, y ≥ y0 − j}
is not empty, let (x′, y′) be the highest point in that
quadrant (pick one arbitrarily if many exist). In that
case, the three points (x0, y0), (x0, y

′), (x′, y′) form a big
empty quadrant structure. �

Lemma 3 If a polyomino P has the big empty quadrant
structure, then H(P ) ≥ 4.

Proof. We construct an arrangement of four copies of
P such that every subset of three copies have a common
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point, but there is no point common to all four copies.
We denote these copies by Pi, with i = 1, . . . , 4.

Consider the three points (x1, y2), (x1, y1), and
(x2, y1) given by the big empty quadrant structure
in P . We construct the copies Pi by flipping P
around the x and/or y axis so that those three
points map to all possible triples of points in the set
{(x1, y1), (x1, y2), (x2, y1), (x2, y2)}. Since (x2, y2) 6∈ P ,
each of the four points is missing from exactly one copy
Pi, but belongs to the other three.

Now we observe that the empty quadrants of the four
copies Pi cover Z2. Hence for any (x, y) ∈ Z2, there
exists at least one i ∈ {1, 2, 3, 4} such that (x, y) 6∈ Pi.
Therefore, the four copies have no common intersection
point. �

We now consider polyominoes that have the small
empty quadrant structure. We will use the following
observation.

Observation 1 For any polyomino P that is not a
rectangle, there exists a 2 × 2 rectangle R such that
|P ∩R| = 3.

Lemma 4 If a polyomino P has the small empty quad-
rant structure and is not a rectangle, then H(P ) ≥ 4.

Proof. We construct an arrangement of at most 8
copies of P such that every subset of three copies have
a common point, but there is no point common to all
copies. Let (x1, y1) be the point given by the small
empty quadrant structure, and P ′ the corresponding
copy of P .

We first consider the case in which the intersection L
of P ′ with the 2× 2 rectangle [x1, x1 + 1]× [y1 − 1, y1]
has cardinality exactly 3. In that case, we can use a
similar construction as in Lemma 3, with four copies
of P ; we define the copies Pi for i = 1, 2, 3, 4 as the
four rotations of P that map the bounding box of L
to the same 2 × 2 rectangle. Those four points are the
respective intersection points of all four possible triples.
Similar to the previous case, the four empty quadrants
cover all the other points of Z2, hence there cannot be
a common intersection point.

It remains to consider the case in which the intersec-
tion L has size 4. In this situation we use the same con-
struction, but complete it with four more copies. From
Observation 1 and the fact that P is not a rectangle,
we know that there exists a 2× 2 rectangle R such that
|P ′ ∩ R| = 3. We add four additional copies Pi, with
i = 5, 6, 7, 8, that are the four rotations of a translated
copy of P ′ mapping R to the bounding box of L. Each
of the four points of this rectangle belongs to copies
P1, P2, P3, P4 (since |L| = 4), and to exactly three of
the four copies P5, P6, P7, P8 (since |P ′∩R| = 3). Hence
every triple of copies intersects. However, from the pre-
vious construction, there still exists no point common

to all 8 copies. This construction does not work for
rectangles, since Observation 1 does not hold in that
case. �

Corollary 5 There is no polyomino of Helly number 3.

Combining this result with the upper bound of [3], we
can compute the Helly number of any convex polyomino:

Corollary 6 Let P be a polyomino that is the intersec-
tion a convex set in R2 with Z2. If P is a rectangle then
H(P ) = 2. Otherwise H(P ) = 4.

3 Hypergraph Generalization

In this section we study some interesting properties of
polyominoes of Helly number k. Since these results hold
for subsets of a discrete set of points, we state these
results in a more general fashion. Instead of copies of
a given polyomino we can consider the same definitions
for families of subsets of Z2. Using this idea, one can
extend the Helly property to hypergraphs.

Definition 6 A hypergraph G = (V, E) is k-Helly if for
anyW ⊆ E such that e1∩. . .∩ek 6= ∅ for all e1, . . . , ek ∈
W, we have ∩e∈We 6= ∅. The Helly number H(G) of a
hypergraph G is the smallest value k such that G is k-
Helly.

Helly numbers of hypergraphs have been deeply stud-
ied (see for example the survey of Dourado, Protti, and
Szwarcfiter [4]). Observe that the above definition is
a generalization of the previous definition for the poly-
omino case. Indeed, the polyomino formulation is the
particular case in which V = Z2 and E contains all sub-
sets of points contained in copies of a fixed polyomino
P .

Let G be a hypergraph that is not k-Helly. By defini-
tion, there exists a subset W ⊆ E such that ∩e∈We = ∅
and e1 ∩ . . . ∩ ek 6= ∅ for any e1, . . . , ek ∈ W. Any such
family is called a a k-witness set of G. For every V ′ ⊂ V ,
define the restriction of G to V ′ as G|V ′ = (V ′, E|V ′),
where E|V ′ = {e ∩ V ′|e ∈ E}. With these definitions we
can prove an upper bound on the Helly number of any
hypergraph:

Theorem 7 Let G = (V, E) be a hypergraph. If |e| ≤ k
∀e ∈ E, then G is (k + 1)-Helly.

Proof. We will show the result by induction on k. Ob-
serve that the claim for k = 0 is trivial, hence we focus
on the induction step. Assume otherwise: let W ⊆ E
be a (k + 1)-witness set, and e be an edge of maximum
size among those of W (by hypothesis we know that
|e| ≤ k).

Consider the hypergraph G′ = (e,W|e \ {e}) (that is,
we disregard all other vertices except those contained
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in e). Since |e| ≤ k, its intersection with any other
edge of W must be of size at most k − 1. Furthermore,
every k-tuple of edges in G′ have a common intersection
(since every k +1 tuple inW including e had a common
intersection). Therefore, by induction G′ is k-Helly. In
particular all edges in G′ have a common intersection,
which by construction intersects e and contradicts the
witness property. �

Corollary 8 Any polyomino P satisfies H(P ) ≤ |P |+
1.

The proof is direct from the fact that the associated hy-
pergraph is |P |-uniform. We also note that the bound of
Corollary 8 is tight: the polyomino {(0, 0), (1, 0),(0, 1)}
(commonly referred as El [2]) has cardinality 3 and con-
tains the small empty quadrant structure. In particular,
by Lemma 4 its Helly number must be at least 4.

In the following we give a few more tools to use when
proving that a given hypergraph is k-Helly (or equiva-
lently, that there cannot exist a k-witness).

Lemma 9 Any k-witnessW of a hypergraph G satisfies
|W| ≥ k + 1 and |e1 ∩ . . . ∩ e`| ≥ k − ` + 1 for all
e1, . . . , e` ∈ W.

Proof. Observe that the first claim is trivial, since if
W has size k or less it cannot have an empty intersec-
tion. The proof of the second claim is by contradiction:
assume otherwise and let e1, . . . , e` ∈ W such that such
that e1 ∩ . . . ∩ e` = {v1, . . . , vm} for some m ≤ k − `.
Since ∩e∈We = ∅, for any i ≤ k − ` there exists fi ∈ W
such that vi 6∈ fi.

Consider now the intersection of e1∩. . .∩e`∩f1∩. . .∩
fm: by construction, this set is empty. Moreover, the
size of the set {e1, . . . , e`, f1, . . . , fm} is at most `+m ≤
` + k− ` = k, which contradicts the witness property of
W. �

For any hypergraph G and vertex v ∈ V , we define
cv = {e ∈ W, v ∈ e} as the edges that contain v. In the
following we show that we can ignore vertices that are
not heavily covered.

Lemma 10 LetW be a k-witness set of G and let V ′ =
{v ∈ V, |cv| ≥ k}. The set W|V ′ is a k-witness for G|V ′ .

Proof. Observe that ∩e∈We = ∅ ⇒ ∩e∈W|V ′ e = ∅.
Hence, it suffices to show that e1 ∩ . . .∩ ek ∩V ′ 6= ∅, for
any e1, . . . , ek ∈ W,

Let S = e1 ∩ . . . ∩ ek. Observe that, since W is a
witness set, we have S 6= ∅. Moreover all points of
S are covered by at least k hyperedges (since they are
contained in e1, . . . , ek). Hence we have S ⊆ V ′. In
particular, we obtain e1∩ . . .∩ek = e1∩ . . .∩ek∩V ′ 6= ∅
which proves the Lemma. �
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Figure 3: Polyomino Fq.
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qbq/2c

q bq/2c

Figure 4: Polyominoes A0 (solid blue) and B2 (dashed
in red). In the example q = 8.

Lemma 9 gives a lower bound on the size of a witness
set. We use a similar reasoning to find an upper bound
as well:

Lemma 11 Let G be any hypergraph such that H(G) =
k. There exists a (k − 1)-witness set W ⊆ E of P such
that |W| = k.

Proof. Let Wmin be the (k− 1)-witness set of smallest
size (pick any arbitrarily if many exist) and let m =
|Wmin|. By Lemma 9 we have m ≥ k. If m = k we are
done, thus we focus in the m > k case.

By minimality of Wmin, there cannot exist a proper
subsetW ′ ⊂ Wmin such that ∩A∈W′A = ∅ (otherwise we
would have a witness set of smaller size). In particular,
any subset {e1, . . . , ek} ⊂ Wmin must have non-empty
intersection. Since G is k-Helly, we have ∩e∈Wmine 6= ∅
which contradicts the witness property. �

4 Higher Helly Numbers

In the following we use the above tools to show the
existence of polyominoes of Helly number k (for any k ≥
5). For any q ∈ N, we define polyomino Fq is defined as
the union of rectangles [−bq/2c,−1]× [0, 0], [1, q]× [0, 0]
and [−1, 1]× [1, 1]. Observe that |Fq| = b3q/2c+ 3, see
Figure 3.

Lemma 12 For any q ≥ 4, we have H(Fq) = q + 1.

Proof. We show the lower bound by constructing a
q-witness set W of Fq. For any i ≤ q, we define
Ai as the copy of Fq translated such that the left-
most point is at position (i, 0). Analogously, we de-
fine polyomino Bi as the 180-degree rotation of Fq

translated so as the leftmost point is at position (i, 0)
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A0
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Adq/2e−1
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Figure 5: q-Witness set for polyomino Fq (for clarity,
each of the copies has been shifted vertically). Ob-
serve that, although the intersection of the witness set
is empty, any q elements of the set have nonempty inter-
section. In the figure, we depicted with a vertical strip
the point that is contained in all polyominoes except
Adq/2e − 1.

(see Figure 4). We define the witness set as W =
{A0, . . . , Adq/2e−1, B0, B0, . . . , Bbq/2c}. Observe that
|W| = dq/2e+ bq/2c+ 1 = q + 1 and that the intersec-
tion between polyominoes Ai and Bj is in the rectangle
[0, b3q/2c]× [0, 0] (for any i and j).

More interestingly, for any 0 ≤ i ≤ dq/2e − 1, poly-
omino Ai does not contain point (bq/2c+ i, 0) (and this
point is contained in all other polyominoes). The same
result holds for polyomino Bi: for any 0 ≤ i ≤ bq/2c,
point (q+i, 0) is contained in all polyominoes except Bi.
In particular, we have ∩C∈WC = ∅ and any subset of
size q has nonempty intersection (see Figure 5). Hence,
W is a q-witness set of Fq.

In order to finish the proof of the Lemma, we must
show that polyomino Fq indeed is (q+1)-Helly. Assume
that Fq is not (q + 1)-Helly. Let W be a (q + 1)-witness
set and let A be the leftmost copy of Fq in W (pick
any arbitrarily if more than one exist). Without loss of
generality, we can assume that A = A0. By Lemma 9,
there must exist at least q + 1 other copies A of Fq such
that |A ∩A0| ≥ q.

First notice that if any two copies of the polyomino do
not align their longest segment horizontally, they only
have an intersection of size at most 4 with A0. More-
over, the only case when this intersection has size 4 is
if they are two copies flipped across the horizontal axis.
In the latter case, any further copy can have an inter-
section of size at most 3 with at least one of those two
copies. Since in either case we obtain a contradiction
with Lemma 9 and the fact that q ≥ 4, we can assume
that for any q+1-witness set, all copies ofW are aligned
horizontally.

Consider now the 3 lower points (bq/2c −
1,−1), (bq/2c,−1) and (bq/2c + 1,−1) of A0. Since
A0 is the leftmost copy of P and q ≥ 4 and copies
are aligned horizontally, the three points can only be
covered by at most two other copies (A1 and A2).
Therefore we apply Lemma 10 to show that any
(q + 1)-witness set of Z2 would be a witness set of
Z2\{(bq/2c−1,−1), (bq/2c,−1), (bq/2c+1,−1)}. Thus,
we focus our attention in the rectangle [0, b3q/2c]×[0, 0].

Observe that, since we are considering only this rect-
angle, the extra copies caused by reflections across the
horizontal axis are eliminated because they become the
same hyperedge in the restricted hypergraph. Hence, all
elements of W must be of the form Ai or Bj for some
i, j ≥ 0. Also notice that we have |A0 ∩ Ai| ≥ q if and
only if i ∈ {1, . . . , bq/2c − 1} (provided that q ≥ 4).
Analogously, if q ≥ 2 we have |A0 ∩ Bj | ≥ q ⇔ j ∈
{0, . . . , bq/2c− 1}. In particular, the set W can have at
most 2bq/2c elements, hence there cannot exist a (q+1)-
witness set.

�

Theorem 13 For any k ∈ N such that k 6= 1, 3, there
exists a polyomino P such that H(P ) = k.
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5 Conclusion

In this paper we have completely characterized for which
values of k there exist polyominoes of Helly number k.
An interesting problem is to find a method to compute
the Helly number of a given polyomino. Using the re-
sults of Section 3, it is not hard to devise an algorithm
that runs in exponential time, testing all possible wit-
ness sets. Although finding an algorithm that works for
general hypergraphs is difficult [4], we wonder whether
one can devise an algorithm that runs in polynomial
time for any given polyomino P .

Finally note that we defined a copy of P as any image
of P with respect to translations and the 8 symmetries
of the square. Our results do not hold if we only consider
translations (or rotations and translations). Hence, it
would be interesting to see how much can the Helly
number of a given polyomino change when allowing or
forbidding these operations.
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