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Abstract

We study several geometric set cover problems in which
the goal is to compute a minimum cover of a given set
of points in Euclidean space by a family of geometric
objects. We give a short proof that this problem is
APX-hard when the objects are axis-aligned fat rectan-
gles, even when each rectangle is an ǫ-perturbed copy
of a single unit square. We extend this result to sev-
eral other classes of objects including almost-circular
ellipses, axis-aligned slabs, downward shadows of line
segments, downward shadows of graphs of cubic func-
tions, 3-dimensional unit balls, and axis-aligned cubes,
as well as some related hitting set problems. Our hard-
ness results are all proven by encoding a highly struc-
tured minimum vertex cover problem which we believe
may be of independent interest.
In contrast, we give a polynomial-time dynamic

programming algorithm for 2-dimensional set cover
where the objects are pseudodisks containing the ori-
gin or are downward shadows of pairwise 2-intersecting
x-monotone curves. Our algorithm extends to the
weighted case where a minimum-cost cover is required.

1 Introduction

In a geometric set cover problem, we are given a range
space (X,S)—a universeX of points in Euclidean space
and a pre-specified configuration S of regions or geomet-
ric objects. The goal is to select a minimum-cardinality
subfamily C ⊆ S such that each point in X lies inside
at least one region in C. In the related hitting set prob-
lem, the goal is instead to select a minimum cardinality
subset Y ⊆ X such that each set in S contains at least
one point in Y . In the weighted generalizations of these
problems, we are also given a vector of positive costs
w ∈ R

S or w ∈ R
X and we wish to minimize the total

cost of all objects in C or Y respectively. Instances with-
out costs (or with unit costs) are termed unweighted.
Geometric covering problems have found many ap-

plications to real-world engineering and optimization
problems in areas such as wireless network design, im-
age compression, and circuit-printing [11] [15]. Unfor-
tunately, even for very simple classes of objects such as
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unit disks or unit squares in the plane, computing the
exact minimum set cover is strongly NP-hard [18]. Con-
sequently, much of the research surrounding geometric
set cover has focused on approximation algorithms. A
large number of constant and almost-constant approx-
imation algorithms have been obtained for various hit-
ting set and set cover problems of low VC-dimension
via ǫ-net based methods [8] [13]. These methods have
spawned a rich literature concerning techniques for ob-
taining small ǫ-nets for various weighted and unweighted
geometric range spaces [12] [1] [22]. Results include
constant-factor linear programming based approxima-
tion algorithms for set cover with objects like fat rect-
angles in the plane and unit cubes in R

3.

However, these approaches have limitations. So far,
ǫ-net based methods have been unable to produce any-
thing better than constant-factor approximations, and
typically the constants involved are quite large. Their
application is also limited to problems involving objects
with combinatorial restrictions such as low union com-
plexity (see [12] for details). A recent construction due
to Pach and Tardos has proven that small ǫ-nets need
not always exist for instances of the rectangle cover prob-
lem—geometric set cover where the objects are axis-
aligned rectangles in the plane [20]. In fact, their result
implies that the integrality gap of the standard set cover
LP for the rectangle cover problem can be as big as
Θ(logn). Despite this, a constant approximation using
other techniques has not been ruled out.

The approximability of problems like rectangle cover
also has connections to related capacitated covering
problems [10]. Recently, Bansal and Pruhs used these
connections, along with a weighted ǫ-net based algo-
rithm of Varadarajan [22], to obtain a breakthrough in
approximating a very general class of machine schedul-
ing problems by reducing them to a weighted cover-
ing problem involving points 4-sided boxes in R

3—axis-
aligned cuboids abutting the xy and yz planes [9].
The 4-sided box cover problem generalizes the rectangle
cover problem in R

2 and thus inherits its difficulty.

In light of the drawbacks of ǫ-net based methods,
Mustafa and Ray recently proposed a different ap-
proach. They gave a PTAS for a wide class of un-
weighted geometric hitting set problems (and conse-
quently, related set cover problems) via a local search
technique [19]. Their method yields PTASs for:

• Geometric hitting set problems involving half-
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spaces in R
3 and pseudodisks (including disks, axis-

aligned squares, and more generally homothetic
copies of identical convex regions) in the plane.

• By implication, geometric set cover problems with
lower half-spaces in R

3 (by geometric duality, see
[5]), disks in R

2 (by a standard lifting transforma-
tion that maps disks to lower halfspaces in R

3, see
[5]), and translated copies of identical convex re-
gions in the plane (again, by duality).

Their results currently do not seem applicable to set
cover with general pseudodisks in the plane. On a re-
lated note, Erlebach and van Leeuwen have obtained a
PTAS for the weighted version of geometric set cover
for the special case of unit squares [14].

1.1 Our Results

We present two main results—a series of APX-hardness
proofs for several geometric set cover and related hitting
set problems, and a polynomial-time exact algorithm for
a different class of geometric set cover problems.
For a set Y of points in the plane, we define the down-

ward shadow of Y to be the set of all points (a, b) such
that there is a point (a, y) ∈ Y with y ≥ b.

Theorem 1 Unweighted geometric set cover is APX-
hard with each of the following classes of objects:

(C1) Axis-aligned rectangles in R
2, even when all rectan-

gles have lower-left corner in [−1,−1+ǫ]×[−1,−1+
ǫ] and upper-right corner in [1, 1+ ǫ]× [1, 1+ ǫ] for
an arbitrarily small ǫ > 0.

(C2) Axis-aligned ellipses in R
2, even when all ellipses

have centers in [0, ǫ] × [0, ǫ] and major and minor
axes of length in [1, 1 + ǫ].

(C3) Axis-aligned slabs in R
2, each of the form [ai, bi]×

[−∞,∞] or [−∞,∞]× [ai, bi].

(C4) Axis-aligned rectangles in R
2, even when the bound-

aries of each pair of rectangles intersect exactly zero
times or four times.

(C5) Downward shadows of line segments in R
2.

(C6) Downward shadows of (graphs of) univariate cubic
functions in R

2.

(C7) Unit balls in R
3, even when all the balls contain a

common point.

(C8) Axis-aligned cubes in R
3, even when all the cubes

contain a common point and are of similar size.

(C9) Half-spaces in R
4.

Additionally, unweighted geometric hitting set is
APX-hard with each of the following classes of objects:

(H1) Axis-aligned slabs in R
2.

(H2) Axis-aligned rectangles in R
2, even when the bound-

aries of each pair of rectangles intersect exactly zero
times or four times.

(H3) Unit balls in R
3.

(H4) Half-spaces in R
4.

Mustafa and Ray ask if their local improvement ap-
proach might yield a PTAS for a wider class of instances;
Theorem 1 immediately rules this out for all of the cov-
ering and hitting set problems listed above by proving
that no PTAS exists for them unless P = NP. Item
(C1) demonstrates that even tiny perturbations can de-
stroy the behaviour of the local search method. (C2)
rules out the possibility of a PTAS for arbitrarily fat
ellipses (that is, ellipses that are within ǫ of being per-
fect circles). (C5) and (C6) stand in contrast to our
algorithm below, which proves that geometric set cover
is polynomial-time solvable when the objects are down-
ward shadows of horizontal line segments or quadratic
functions. In the case of (C4) and (H2), the intersec-
tion graph of the rectangles is a comparability graph
(and hence a perfect graph); even then, neither set cover
nor hitting set admits a PTAS. (C7), (C8), (C9), (H3),
and (H4) complement the result of Mustafa and Ray by
showing that their algorithm fails in higher dimensions.
All of our hardness results are proven by directly

encoding a restricted version of unweighted set cover,
which we call SPECIAL-3SC :

Definition 2 In an instance of SPECIAL-3SC, we are
given a universe U = A∪W ∪X∪Y ∪Z comprising dis-
joint sets A = {a1, . . . , an}, W = {w1, . . . , wm}, X =
{x1, . . . , xm}, Y = {y1, . . . , ym}, and Z = {z1, . . . , zm}
where 2n = 3m. We are also given a family S of 5m
subsets of U satisfying the following two conditions:

• For each 1 ≤ t ≤ m, there are integers 1 ≤ i <
j < k ≤ n such that S contains the sets {ai, wt},
{wt, xt}, {aj , xt, yt}, {yt, zt}, and {ak, zt} (sum-
ming over all t gives the 5m sets contained in S.)

• For all 1 ≤ t ≤ n, the element at is in exactly two
sets in S.

In section 2, we show:

Lemma 3 SPECIAL-3SC is APX-hard.

Our second result is a dynamic programming algo-
rithm that exactly solves weighted geometric set cover
with various simple classes of objects:

Theorem 4 There exists a polynomial-time exact al-
gorithm for the weighted geometric set cover problem
involving downward shadows of pairwise 2-intersecting
x-monotone curves in R

2. Moreover, it runs in
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O(mn2(m + n)) time on a set system consisting of n
points and m regions.

Our algorithm is a generalization and simplification of
a similar algorithm appearing in [10] for a combinatorial
problem equivalent to geometric set cover with down-
ward shadows of horizontal line segments in R

2. We
believe that our current presentation is much shorter
and cleaner; in particular, we do not require shortest
path as a subroutine. We can also extend our algorithm
to some related geometric set systems:

Corollary 5 There exists a polynomial-time exact al-
gorithm for the weighted geometric set cover problem
involving a configuration of pseudodisks in R

2 where the
origin lies within the interior of each pseudodisk. Fur-
thermore, it runs in O(mn2(m+n)) time on a set system
consisting of n points and m pseudodisks.

Proof. Via the topological sweep given in Lemma 2.11
of [4], we transform the arrangement of pseudodisks into
a topologically equivalent one in which the pseudodisks
are star-shaped about the origin. We note that the
transformation can be completed in O(m2 +mn) time
assuming a representation allowing appropriate prim-
itive operations. We then map the star-shaped pseu-
dodisks to the downward shadows of 2-intersecting x-
monotone functions on [0, 2π) via a polar-to-cartesian
transformation, enabling us to apply Theorem 4. �

1.2 Related Work

The problem of assembling a given rectilinear polygon
from a minimum number of (possibly overlapping) axis-
aligned rectangles was first proven to be MAX-SNP-
complete by Berman and Dasgupta [6], which rules out
the possibility of a PTAS unless P = NP. Since set cover
with axis-aligned rectangles can encode these instances,
it too is MAX-SNP-complete. However, the proof in [6]
cannot be applied to produce an instance of geometric
set cover using only fat rectangles.
In his recent Ph.D. thesis, van Leeuwen proves APX-

hardness for geometric set cover and dominating set
with axis-aligned rectangles and ellipses in the plane
[23]. Har-Peled provides a simple proof that set cover
with triangles is APX-hard, even when all triangles are
fat and of similar size [16]. Har-Peled also notes that
set cover with circles (that is, with boundaries of disks)
is APX-hard for a similar reason. However, neither the
results of van Leeuwen nor Har-Peled can be directly
extended to fat axis-aligned rectangles or fat ellipses.
There are few non-trivial examples of geometric set

cover problems that are known to be poly-time solv-
able. Har-Peled and Lee give a dynamic programming
algorithm for weighted cover of points in the plane by
half-planes [17]; their method runs in O(n5) time on an
instance with n points and half-planes. Our algorithm

both generalizes theirs and reduces the run time by a
factor of n. Ambühl et al. give a poly-time dynamic
programming algorithm for weighted covering of points
in a narrow strip using unit disks [3]; their method ap-
pears to be unrelated to ours.
An interesting PTAS result is that of Har-Peled and

Lee, who give a PTAS for minimum weight cover with
any class of fat objects, provided that each object is al-
lowed to expand by a small amount [17]. Our results
show that without allowing this, a PTAS cannot be ob-
tained.

2 APX-Hardness of SPECIAL-3SC

In this section, we prove Lemma 3. We recall that a pair
of functions (f, g) is an L-reduction from a minimization
problem A to a minimization problem B if there are
positive constants α and β such that for each instance
x of A, the following hold:

(L1) The function f maps instances of A to instances of
B such that OPT(f(x)) ≤ α ·OPT(x).

(L2) The function g maps feasible solutions of f(x)
to feasible solutions of x such that cx(g(y)) −
OPT(x) ≤ β ·

(

cf(x)(y)−OPT(f(x))
)

, where cx
and cf(x) are the cost functions of the instances x
and f(x) respectively.

We exhibit an L-reduction from minimum vertex
cover on 3-regular graphs (hereafter known as 3VC) to
SPECIAL-3SC. Since 3VC is APX-hard [2], this proves
that SPECIAL-3SC is APX-hard (see [21] for details).
Given an instance x of 3VC on edges {e1, . . . , en} with

vertices {v1, . . . , vm} where 3m = 2n, we define f(x) be
the SPECIAL-3SC instance containing the sets {ai, wt},
{wt, xt}, {aj , xt, yt}, {yt, zt}, and {ak, zt} for each 4-
tuple (t, i, j, k) such that vt is a vertex incident to edges
ei, ej, and ek with i < j < k. To define g, we suppose
we are given a solution y to the SPECIAL-3SC instance
f(x). We take vertex vt in our solution g(y) of the
3VC instance x if and only if at least one of {ai, wt},
{aj, xt, yt}, or {ak, zt} is taken in y. We observe that g
maps feasible solutions of f(x) to feasible solutions of x
since ei is covered in g(y) whenever ai is covered in y.
Our key observation is the following:

Proposition 6 OPT(f(x)) = OPT(x) + 2m.

Proof. For 1 ≤ t ≤ m, let Pt = {{wt, xt}, {yt, zt}} and
Qt = {{ai, wt}, {aj, xt, yt}, {ak, zt}}. Call a solution C
of f(x) segregated if for all 1 ≤ t ≤ m, C either contains
all sets in Pt and no sets in Qt, or contains all sets in
Qt and no sets in Pt.
Via local interchanging, we observe that there exists

an optimal solution to f(x) that is segregated. Addi-
tionally, our function g, when restricted to segregated
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solutions of f(x), forms a bijection between them and
feasible solutions of x. We check that g maps segre-
gated solutions of size 2m+ k to solutions of x having
cost precisely k, and the result follows. �

Proposition 6 implies that f satisfies property (L1)
with α = 5, since OPT(x) ≥ m

2 . Moreover, cx(g(y)) +
2m ≤ cf(x)(y) since both {wt, xt} and {yt, zt} must be
taken in y whenever vt is not taken in g(y), and at least
three of {{ai, wt}, {wt, xt}, {aj, xt, yt}, {yt, zt}, {ak, zt}}
must be taken in y whenever vt is taken in g(y). To-
gether with Proposition 6, this proves that g satisfies
property (L2) with β = 1. Thus (f, g) is an L-reduction.

3 Encodings of SPECIAL-3SC via Geometric Set

Cover

In this section, we prove Theorem 1 using Lemma 3,
by encoding instances of various classes of geomet-
ric set cover and hitting set problems as instances of
SPECIAL-3SC. The beauty of SPECIAL-3SC is that
it allows many of our geometric APX-hardness results
to follow immediately from simple “proofs by pictures”
(see Figure 3). The key property of SPECIAL-3SC is
that we can divide the elements into two sets A and
B = W ∪ X ∪ Y ∪ Z, and linearly order B in such a
way that all sets in S are either two adjacent elements
from B, one from B and one from A, or two adjacent
elements from B and one from A. We need only make
[wt, xt, yt, zt] appear consecutively in the ordering of B.

For (C1), we simply place the elements of A on the
line segment {(x, x − 2) : x ∈ [1, 1 + ǫ]} and place the
elements of B, in order, on the line segment {(x, x+2) :
x ∈ [−1,−1 + ǫ]}, for a sufficiently small ǫ > 0. As we
can see immediately from Figure 3, each set in S can be
encoded as a fat rectangle in the class (C1).

(C2) is similar. It is not difficult to check that each
set can be encoded as a fat ellipse in this class.

For (C3), we place the elements of A on a horizontal
line (the top row). For each 1 ≤ t ≤ m, we create a new
row containing {wt, xt} and another containing {yt, zt}
as shown in Figure 3. This time, we will need the second
property in Definition 2—that each ai appears in two
sets. If {ai, wt} is the first set that ai appears in, we
place wt slightly to the left of ai; if it is the second set
instead, we place wt slightly to the right of ai. Similarly,
the placement of xt, yt (resp. wt) depends on whether a
set of the form {aj, xt, yt} (resp. {ak, wt}) is the first or
second set that aj (resp. ak) appears in. As we can see
from Figure 3, each set in S can be encoded as a thin
vertical or horizontal slab.

(C4) is similar to (C3), with the slabs replaced by
thin rectangles. For example, if {ai, wt} and {ai, wt′}
are the two sets that ai appears in, with wt located
higher than wt′ , we can make the rectangle for {ai, wt}

slightly wider than the rectangle for {ai, wt′} to ensure
that these two rectangles intersect 4 times.
For (C5), we can place the elements of A on the ray

{(x,−x) : x > 0} and the elements of B, in order, on
the ray {(x, x) : x < 0}. The sets in S can be encoded
as downward shadows of line segments as in Figure 3.
(C6) is similar to (C5). One way is to place the el-

ements of A on the line segment ℓA = {(x, x) : x ∈
[−1,−1 + ǫ]} and the elements of B (in order) on the
line segment ℓB = {(x, 0) : x ∈ [1.5, 1.5 + ǫ]}. For any
a ∈ [−1,−1+ ǫ] and b ∈ [1.5, 1.5+ ǫ], the cubic function
f(x) = (x − b)2[(a + b)x − 2a2]/(b − a)3 is tangent to
ℓA and ℓB at x = a and x = b. (The function intersects
y = 0 also at x = 2a2/(a + b) ≫ 1.5 + ǫ, far to the
right of ℓB.) Thus, the size-2 sets in S can be encoded
as cubics. A size-3 set {aj , xt, yt} can also be encoded
if we take a cubic with tangents at aj and xt, shift it
upward slightly, and make xt and yt sufficiently close.
For (C7), we place the elements in A on a circular

arc γA = {(x, y, 0) : x2 + y2 ≤ 1, x, y ≥ 0} and the
elements in B (in order) on the vertical line segment
ℓB = {(0, 0, z) : z ∈ [1−2ǫ, 1−ǫ]}. (This idea is inspired
by a known construction [7], after much simplification.)
We can ensure that every two points in A have distance
Ω(

√
ǫ) if ǫ ≪ 1/n2. The technical lemma below allows

us to encode all size-2 sets (by setting b = b′) and size-3
sets by unit balls containing a common point.

Lemma 7 Given any a ∈ γA and b, b′ ∈ ℓB, there exists
a unit ball that (i) intersects γA at an arc containing a of
angle O(

√
ǫ), (ii) intersects ℓB at precisely the segment

from b to b′, and (iii) contains (1/
√
2, 1/

√
2, 1).

Proof. Say a = (x, y, 0), b = (0, 0, z−h), b′ = (0, 0, z+
h). Consider the unit ball K centered at c = ((1 −
h2)x, (1 − h2)y, z). Then (ii) is self-evident and (iii)
is straightforward to check. For (i), note that a lies
in K since ‖a − c‖2 = h2 + z2 ≤ ǫ2 + (1 − ǫ)2 < 1.
On the other hand, if a point p ∈ γA lies in the unit
ball, then letting a′ = ((1− h2)x, (1− h2)y, 0), we have
‖p − c‖2 = ‖p − a′‖2 + z2 ≤ 1, implying ‖p − a‖ ≤
‖p− a′‖+ ‖a′ − a‖ ≤

√
1− z2 + h = O(

√
ǫ). �

(C8) is similar to (C1); we place the elements in A
on the line segment ℓA = {(t, t, 0) : t ∈ (0, 1)} and the
elements in B on the line segment ℓB = {(0, 3−t, t) : t ∈
(0, 1)}. For any (a, a, 0) ∈ ℓA and (0, 3− b, b) ∈ ℓB, the
cube [−3+b+2a, a]×[a, 3−b]×[−3+a+2b, b] is tangent
to ℓA at (a, a, 0), is tangent to ℓB at (0, 3 − b, b), and
contains (0, 1, 0). Size-3 sets {aj, xt, yt} can be encoded
by taking a cube with tangents at aj and xt, expanding
it slightly, and making xt and yt sufficiently close.
(C9) follows from (C7) by the standard lifting trans-

formation [5].
For (H1), we map each element ai to a thin vertical

slab. For each 1 ≤ t ≤ m, we map {wt, xt, yt, zt} to a
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Figure 1: APX-hardness proofs of geometric set cover problems.

cluster of four thin horizontal slabs as in Figure 3. Each
set in S can be encoded as a point in the arrangement.
(H2) is similar; see Figure 3.

(H3) follows from (C7) by duality.

(H4) follows from (C9) by duality.

4 Algorithm for Weighted Covering by Downward

Shadows of 2-Intersecting x-Monotone Curves

Here, we prove Theorem 4 by giving a polynomial-
time dynamic programming algorithm for the weighted
cover of a finite set of points X ⊆ R

2 by a set S of
downward shadows of 2-intersecting x-monotone curves
C1, . . . , Cm. For 1 ≤ i ≤ m, define the region Si ∈ S
to be the downward shadow of the curve Ci and let it
have positive cost wi. Define n = |X |.
We shall assume that each Ci is the graph of a smooth

univariate function with domain [−∞,∞], that all in-
tersections are transverse (no pair of curves intersect
tangentially), and that no points in X lie on any curve
Ci. It is not difficult to get around these assumptions,
but we retain them to simplify our explanation.

We shall abuse notation by writing Ci(x) for the
unique y ∈ R such that (x, y) lies on the curve Ci. We
say curve Ci is wider than curve Cj (written Ci ≻ Cj)
whenever Ci(x) > Cj(x) for all sufficiently large x. We
may also write Si ≻ Sj whenever Ci ≻ Cj . We note that
≻ is a total ordering and thus we can order all curves
by width, so we assume without loss of generality that
Ci ≻ Cj whenever i > j. The width-based ordering of

curves is useful because of the following key observation:

Proposition 8 If Ci ≻ Cj, then Sj \ Si is connected.

Proof. This is clearly true if Ci and Cj intersect once
or less. If Ci and Cj intersect transversely twice—say, at
(x1, y1) and (x2, y2) with x2 > x1—then the area above
Ci but below Cj can only be disconnected if Cj(x) >
Ci(x) for x < x1 and x > x2, implying Cj ≻ Ci. �

For all 1 ≤ i ≤ m and all intervals [a, b], define
X [a, b] to be all points in X with x-coordinate in [a, b],
and define X [a, b, i] to be X [a, b] \ Si. Define S<i to
be the set {S1, . . . , Si−1} of all regions of width less
than Si. Let M [a, b, i] denote the minimum cost of a
solution to the weighted set cover problem on the set
system (X [a, b, i],S<i) (with weights inherited from the
original problem). If such a covering does not exist,
M [a, b, i] = ∞. For simplicity, we assume that Cm, the
widest curve, contains no points in its downward shadow
(that is, X ∩ Sm is empty). Our goal is then to deter-
mine M [−∞,∞,m] via dynamic programming; the key
structural result we need is the following:

Proposition 9 If X [a, b, i] is non-empty, then

M [a, b, i] = min
{

min
c∈(a,b)

{M [a, c, i] +M [c, b, i]},

min
j<i

{M [a, b, j] + wj}
}

.

Proof. Clearly M [a, b, i] ≤ M [a, c, i] +M [c, b, i] for all
c ∈ (a, b). Also, for j < i, M [a, b, j] + wj is the cost of
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purchasing Sj and then covering the remaining points
in X [a, b] using regions less wide than Sj (and hence
less wide than Si). Thus M [a, b, j] + wj is a cost of a
feasible solution to (X [a, b, i],S<i) and hence is at least
M [a, b, i]. It follows that M [a, b, i] is bounded above by
the right hand side.
To show that M [a, b, i] is bounded below by the right

hand side, we let Z ⊆ S<i be a feasible set cover for
(X [a, b, i],S<i). We consider two cases:
Case 1: There is some c ∈ (a, b) such that (c, Ci(c))

is not covered by Z. Let Z<c be the set of all regions
in Z containing a point in X [a, c, i], and let Z>c be the
set of all regions in Z containing a point in X [c, b, i].
Let Z ∈ Z. Since Z ≺ Si, by Proposition 8, Z \ Si

is connected and thus cannot contain points both in
X [a, c, i] and X [c, b, i]. Hence Z<c ∩ Z>c = ∅ and thus
the cost of Z is at least M [a, c, i] +M [c, b, i].
Case 2: For all c ∈ (a, b), the point (c, Ci(c)) is cov-

ered by Z. Then Z covers X [a, b, i] ∪ Si and hence
covers all points in X [a, b]. Let Cj be the widest curve
in Z, noting that j < i. Then the cost of Z is at least
wj + M [a, b, j] since Z \ Sj must cover all points in
X [a, b, j].
It follows that Z must cost as much as either

minc∈(a,b){M [a, c, i] +M [c, b, i]} or minj<i{M [a, b, j] +
wj}, and the result follows. �

Proposition 9 immediately implies the existence
of a dynamic programming algorithm to compute
M [−∞,∞,m] and return a cover having that cost.
There are at most n + 1 combinatorially relevant val-
ues of a and b when computing optimal costs M [a, b, i]
for subproblems, so there are O(mn2) distinct values of
M [a, b, i] to compute. Recursively computing M [a, b, i]
requires O(m + n) table lookups, so the total runtime
of our algorithm is O(mn2(m + n)), assuming a repre-
sentation allowing primitive operations in O(1) time.
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