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Abstract

In this paper, we propose a novel Fourier-theoretic ap-
proach for estimating the symmetry group G of a geo-
metric object X. Our approach takes as input a geomet-
ric similarity matrix between low-order combinations of
features of X and then searches within the tree of all
feature permutations to detect the sparse subset that
defines the symmetry group G of X. Using the Fourier-
theoretic approach, we construct an efficient marginal-
based search strategy, which can recover the symme-
try group G effectively. The framework introduced in
this paper can be used to discover symmetries of more
abstract geometric spaces and is robust to deformation
noise. Experimental results show that our approach can
fully determine the symmetries of many geometric ob-
jects.

1 Introduction

Symmetries are extremely common in both man-made
and natural objects. In the context of computational
geometry, we often consider the symmetry group of a
geometric object with a pre-defined metric. One easy
way of describing all symmetries of geometric objects is
to look at group actions, where we use a set to repre-
sent the object, and the symmetries of the object are
described by bijective mappings on the set. In this pa-
per, assume we have a discrete set X = {xi}ni=1 which
describes a geometric object. As shown in Figure 1-(a),
the five tip points on a star can be used as a discrete
set X to study the symmetry of such a 3D star model.
This is because each symmetry of the star model can
be identified with a permutation of the elements in X1.
For convenience, we say a permutation is “good” if it
can be identified as a symmetry of the geometric object.
It can be shown that all good permutations of X consist
a group G, which is the symmetry group of X.

In practice, we are often limited to verifying low-order
information about X, such as the similarity of curva-
tures between pairs of points (first order), or the consis-

∗Institute of Computational and Mathematical Engineering,
Stanford University, xiaoyej@stanford.edu
†Mathematical Sciences Center, Tsinghua University,

jsun@math.tsinghua.edu.cn
‡Department of Computer Science, Stanford University,

guibas@cs.stanford.edu
1Choosing different set X can result in different group actions.

In this paper, however, we assume such a set X is given where
each symmetry can be identified as permuting X.

tency of distances between pairs of pairs of points (sec-
ond order). But how can we integrate such low-order
pieces of symmetry evidence together to identify all the
good permutations of X and derive its symmetry group?
This question is quite challenging since the space of all
permutations grows factorially with the number of ele-
ments in X so that directly searching among all permu-
tations is impossible, unless n is small. In this paper,
we propose a Fourier-theoretic approach to address this
problem, based on low-order similarities of points in X.

The symmetry group of X is a subgroup of the per-
mutation group Sn, where n = |X|. To search for G,
we naturally have the following simple strategy: we or-
ganize the elements of Sn in a tree where each node
represents all the permutations in its sub-tree, and then
search those in G within the tree, see Figure 1-(b) for an
illustration of the tree. Whenever we reach a permuta-
tion of X, we check whether it is a good one. However,
such a brute force strategy would be computationally
intractable for all but very small n.

In this paper, we propose a novel search strategy
within the tree of Sn, called the marginal probability
search, which fully exploits the algebraic structure of
the groups G and Sn. The main contribution of the pa-
per are the following two ways of making use of algebraic
structures to facilitate the search of symmetries.

Firstly, we consider the symmetry group G as an in-
dicator distribution (see Theorem 1 in Section 2) over
the permutation group Sn. This novel point of view
enables us to utilize techniques from the group repre-
sentation theory to convert low-order information into
a set of Fourier coefficients which characterizes the
low-frequency components of the distribution over Sn.
Those Fourier coefficients can thus be used to efficiently
estimate the marginal probability of the permutations
represented by an internal node, which serves as the cri-
terion for pruning the sub-tree rooted at that node. Un-
like other traditional pruning criteria [4], the marginal
probability is much more informative as it not only eval-
uates the part of the permutation which is already de-
termined but also summarizes the remaining part which
is undecided, and thus provides a more efficient pruning.

Secondly, we exploit the group structure of G and
show that the internal nodes on the same level have
either the same marginal probability as the node con-
taining the identity permutation or 0 marginal proba-
bility for the indicator distribution G. This ensures the
correctness of taking the marginal probability of the in-
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ternal nodes as the reference for pruning.
The approach proposed in this paper generalizes the

existing work on graph automorphism, in the sense that
we can deal with noisy similarity information caused by
heavy distortion or deformation of the geometric ob-
ject and robustly estimate the symmetry group G from
the input. Moreover, any arbitrary order of similari-
ties, e.g., triple-wise or even higher order similarities
can be taken as input in our framework. Different orders
of similarities can be combined together easily because
Fourier analysis can fully disentangle and decompose
the information over permutations of different orders
into orthogonal components. In addition, our approach
does not require a concrete realization of the geometric
object. As long as a discrete set X, which characterizes
the symmetry of the geometric object, can be effectively
extracted, our approach can be used for inferring the
symmetry group G.
Related work We note that a great amount of re-
search has already been done on Euclidean symmetry
detection in the geometry processing community [7, 10].
However, those approaches often suffer from the curse
of dimensionality. The problem of inferring the global
symmetry from low-order similarities, is closely related
to the graph automorphism problem, or more gener-
ally, the colored graph automorphism problem. However,
there are no known polynomial time algorithms for find-
ing the automorphism group of a general graph except
for certain special cases such as the triply connected
planar graph [2, 16]. The problem we consider also con-
nects to the orbit partitioning problem whose goal is to
determine whether two vertices or two pairs of vertices
lie in the same orbits. However, those problems are gen-
erally very difficult, and there are no known polynomial
time algorithms [1, 11, 13].

2 Marginal Probability of Cosets

In this section, we give a detailed description on how
to organize all the elements in Sn in a tree. We also
show that the marginal probabilities of the nodes on the
same level only take two possible values for the indicator
distribution of G.

We consider a tree decomposition of all permutations
in Sn as depicted in figure 1-(b). All permutations are
classified into n sub-trees according to their mappings
on the last element, i.e., σ(n), where σ denotes a permu-
tation. The n sub-trees are further classified according
to their mappings on the last two elements, i.e., σ(n−1)
and σ(n). In general, a node on the k-th level stands for
all permutations that maps the tuple (n− k+ 1, · · · , n)
to a particular k-tuple. Thus, the leaves in the tree
represent all the permutations.

Let f be a distribution over Sn. We consider the
marginal probability of a node on the kth level:∑

σ∈Sn

f(σ)I

(
σ(n− k + 1, · · · , n) = (tn−k+1, · · · , tn)

)
, (1)

which sums up all f(σ) such that σ maps the k-tuple
(n−k+ 1, · · · , n) to the k-tuple (tn−k+1, · · · , tn) where
ti’s are all distinct and each ti ∈ {1, · · · , n}. Here, I is
an indicator function which is 1 if and only if σ maps
i to ti for all n − k + 1 ≤ i ≤ n. Each node in the
tree of permutations is associated with such a marginal
probability. The following theorem characterizes spe-
cific properties of these marginal probabilities.

Theorem 1 Let f(σ) =

{ 1
|G| , σ ∈ G
0, σ 6∈ G (2)

be the indicator distribution for G in Sn, and let mk

be the marginal probability of all permutations that fix
(n − k + 1, · · · , n), i.e., the quantity in (1) with ti =
i (n − k + 1 ≤ i ≤ n). Then, we have mk 6= 0; and for
every node on the k-th level, its marginal probability (1)
is either 0 or mk.

The proof of Theorem 1 is based on coset represen-
tation theorems. This theorem immediately translates
into a search strategy for estimating the group G. Ba-
sically, we perform a top-down search in the tree of
Sn. A node which represent all permutations that map
(n− k + 1, · · · , n) to a k-tuple (tn−k+1, · · · , tn) will be
kept only if its marginal probability is nonzero. The
group G can be fully decided if all those marginal infor-
mation is available.

3 Inference with the Similarity Matrix

In real applications, the primary challenge for esti-
mating the group G is that the marginal probabilities
needed for search are not directly observable. Instead,
we typically can only verify low-order similarities. In
this section, we introduce two related concepts: the sim-
ilarity matrix and the marginal probability matrix.

Definition 2 A low-order similarity matrix Sk of order
k (k is usually very small) for X (|X| = n) is an N -
by-N matrix where N = n(n− 1) · · · (n− k+ 1) and the
(i, j)-entry is a similarity measure sij for two k-tuples

(t
(i)
1 , · · · , t(i)k ) and (t

(j)
1 , · · · , t(j)k ) indexed by i, j.

We can construct various similarity measures sij for
two k-tuples indexed by i and j, for example:
• k = 1: we can use a binary rule by letting sij = 1

if and only if points i and j have the same curvature; or
use a continuous Gaussian kernel sij = exp(−|ci− cj |2)
where ci, cj are the curvatures of the point i, j.
• k = 2: we can use a binary rule by letting sij = 1

if and only if distances di and dj are the same, where
di (dj) is the distance between two points in the pair i
(j); or use a Gaussian kernel sij = exp(−|di − dj |2).

Definition 3 Given a distribution f on permutations
(
∑
σ f(σ) = 1), the k-th order marginal probability

matrix Hk of f is an N -by-N matrix where N =
n(n − 1) · · · (n − k + 1) and the (i, j)-entry equals
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Figure 1: (a) Star. (b) Tree Decomposition of Sn.∑
σ f(σ)I(σ(i) = j), where i and j index two k-tuples:

(t
(i)
1 , · · · , t(i)k ) and (t

(j)
1 , · · · , t(j)k ).2

For a given geometric object X, we can compute its
low order similarity matrix. We hope such a matrix
can approximate the marginal probability matrix of the
indicator distribution if we normalize the similarity ma-
trix so that each row sum equals one. As two real ex-
amples, we look at the low order similarity matrices for
the star and human (see Figure 1-(a) and Figure 3-(d)).

For the star example, we compute the similarity ma-
trices using the binary rule (see Figure 2-(a,c)). The
first order similarity matrix is an all-one matrix which
has no information about the symmetry, however, the
second order similarity matrix S2 can completely re-
veal the symmetry – if we normalize S2 so that each
row-sum is one, then the normalized similarity matrix
exactly equals the marginal probability matrix H2 of
the distribution indicating the five-fold dihedral group
G = D5 as in (2) which characterizes the symmetry.

For the human example (see Figure 2-(b,d)), we com-
pute the similarity matrices using the Gaussian kernel.
The first order similarity matrix takes a block diago-
nal form, which partially reveals the symmetry of the
human. However, there are still ambiguities that can
not be resolved by first order information – whenever
we map the left hand to the right hand, we have to
map the left foot to the right foot. However, the second
order similarity matrix S2 constructed by computing
exp(−|di − dj |2) can help us further clarify the symme-
try group of the human – if we normalize S2, then it well
approximates (there are tiny noises within the human
model) the marginal probability matrix H2 of the dis-
tribution indicated by one-fold dihedral group G = D1.

In the above two examples, we observe that the nor-
malized similarity matrix is a good approximation of
the marginal probability matrix for the distribution in-
dicating G if we use a good similarity measure. Such
a matrix can reveal G better if we incorporate higher
order information because in the extremal case the n-th
order marginal probability matrix can exactly pinpoint
the distribution over permutations. Theoretically, we
may prove that normalized low order similarity matrix
in the noiseless case (computed using the binary rule)
equals the marginal probability matrix in the manifold
setting, as long as the signatures we use to construct
similarity measures are powerful enough [9].

In this sequel, we assume the normalized low-order
similarity matrix estimated from geometric objects ap-

2The mk defined in Theorem 1 is one element of Hk where

(t
(i)
1 , · · · , t(i)k ) and (t

(j)
1 , · · · , t(j)k ) both equals (n− k + 1, · · · , n).

(a)

(b) (c) (d)

(e) (f)

Figure 2: (a,b) First order similarity matrix for the star
and human; (c,d) Second order similarity matrix for the
star and human. The normalized similarity matrix are
of the same block structures except that each row sum
equals one. (e,f) Reconstructed distribution over per-
mutations from the normalized second order similarity
matrix for the star and human. Red dots denote good
permutations.

proximates a marginal probability matrix of the indica-
tor distribution of G.3 By using the Fourier transforms
over permutation group, we can extract a set of low
frequency Fourier coefficients from the normalized low-
order similarity matrix, which provides a band-limited
approximation (`2 projection in the Fourier space) for
the indicator distribution of G over Sn [5]. With such a
set of Fourier coefficients, we estimate all the marginal
probabilities and search elements in G in the tree of all
permutations.

3.1 Fourier Approach

In this section, we consider the problem of estimating
all the marginal probabilities needed for search based on
the normalized low-order similarity matrix S. We first
translate the matrix S into a set of Fourier coefficients
f̂λ’s using Specht modules [6]. Those Fourier com-
ponents (indexed by λ) characterize the low-frequency
components of the distribution f over permutations. Af-
ter that, we compute a pointwise product of f with the
indicator I(σ(n) = (tn)) in the Fourier domain, so that
the distribution over all permutations {σ} such that σ
maps n to tn can be extracted. The result of such a
pointwise distribution can be summarized by a distri-
bution over Sn−1 if one relabels 1, 2, · · · , n so that tn
becomes n. We use an algorithm called Kronecker Con-
ditioning to compute the pointwise product completely
in the Fourier domain [5]. A theorem by [8] gives us a
bound on which representations can appear in the re-
sult of such a pointwise product. We finally apply an
FFT based approach, which will be described later, to
compactly summarize such a distribution over Sn−1.

The above procedure decomposes the distribution im-
plied by S to n distributions over Sn−1. Such a proce-

3We make sure that the normalized similarity matrix is a valid
marginal probability matrix by imposing certain inherent con-
straints such as doubly stochasticity [5].
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dure can be used iteratively on each Sn−1, until we reach
the bottom of the tree decomposition of Sn. At each
node, a set of Fourier coefficients are maintained to char-
acterize the distribution over permutations dominated
by that node. The key benefit of using Fourier coeffi-
cients to summarize the information is due to the sim-
plicity of evaluating marginals in the Fourier domain [5].

In this process, we see that the relabeling is used
extensively, so that we can view the permutations as
if they are always permuting (1, · · · , n − 1), rather
than mapping from (1, · · · , n− 1) to (1, · · · , t̂n, · · · , n).
Whenever such a relabeling operation is used, the
Fourier coefficients of f on Sn also change accordingly.
It turns out that there is a class of operations, called
shift operations [3] which can compute the Fourier trans-
form with respect to the reordered sets.

3.2 FFT-Based Method

In this section, we detail how to extract the Fourier
coefficients of f restricted on Sn−1 from f̂λ, which is an
essential step in estimating the marginals.

In the tree decomposition of Sn, we see that Sn =
∪ni=1Ji, nKSn−1, where Ji, nK denotes the cyclic permu-
tation (i, i + 1, · · · , n) (i is mapped to i + 1, i + 1 is
mapped to i+ 2, etc, n is mapped to i), and Ji, nKSn−1

is the so-called left Sn−1-coset

Ji, nKSn−1 = {σ ∈ Sn|σ(n) = i} (3)

The fast Fourier transform (FFT) for Sn works by
relating the Fourier transform over Sn to Fourier trans-
forms over the above n cosets. This idea can be ap-
plied recursively, computing the Fourier transform on
each Sn−1-coset from n−1 Fourier transforms on Sn−2-
cosets, etc., all the way down to S1-cosets, which are
individual permutations. We will present a method to
estimate the high order marginals using this approach.

More precisely, we can define the restriction of f to
the Ji, nKSn−1-coset as fi(τ) = f(Ji, nKτ) (which is now
a function on Sn−1), and observing that the Fourier
transform of f can be broken up as

f̂λ =
∑
σ∈Sn

f(σ)ρλ(σ) =
n∑
i=1

∑
τ∈Sn−1

f(Ji, nKτ)ρλ(Ji, nKτ) (4)

=

n∑
i=1

ρλ(Ji, nK)
∑

τ∈Sn−1

fi(τ)ρλ(τ) (5)

The inner summation on the right of this equation
looks almost like the Fourier transform of fi over the
smaller group Sn−1, except that ρλ is an irreducible
representation of Sn instead of Sn−1. In fact, the ρλ(τ)
matrices do form a representation of Sn−1, but in gen-
eral this representation is not irreducible. Maschke’s
theorem [14] tells us that we can express it in terms of
the ρµ irreducible representations of Sn−1 in the form

ρλ(τ) =
⊕

µ∈λ↓n−1

ρµ(τ) (6)

if a particular system of irreducible representa-
tions for Sn, called Young’s Orthogonal Representation

(YOR) [14] is used. Here λ ↓n−1 denotes the set of all
partitions of n−1 dominated by λ, i.e., those partitions
that we can get from λ by removing a single box from
λ’s diagram. Plugging (6) into (5) gives the relationship

between f̂ and f̂1, f̂2, · · · , f̂n:

f̂λ =
n∑
i=1

ρλ(Ji, nK)
⊕

µ∈λ↓n−1

(f̂i)µ (7)

Such a formula can also be inverted to express f̂1, f̂2,
· · · , f̂n in terms of f̂ :

(f̂i)µ =
n− 1

ndµ

∑
λ∈µ↑n

dλρλ(Ji, nK)−1
(f̂λ)µ (8)

where µ ↑n is the set of all partitions of n that dom-
inate µ, i.e., which can be derived from µ by adding a
single box, and (f̂λ)µ is the block of f̂λ for µ.

The ideas in FFTs can be used to identify a restricted
components. For the function given by f(σ)I(σ(n) =
n), we know that f only takes nontrivial values on Sn−1.
We have the following result to exactly calculate the
Fourier coefficients for the function f restricted on Sn−1.

Theorem 4 Given a distribution f on Sn that only
takes nontrivial values on Sn−1, then function restricted
on Sn−1 has Fourier coefficients

(f̂ |Sn−1
)µ ∝

1

dµ

∑
λ∈µ↑n

zλ,µ∑
j=1

dλ(f̂λ)µ (9)

The operation involved in computing the Fourier co-
efficients for f |Sn−1

amounts to finding certain blocks

within the f̂λ matrices and adding them together
weighted by the appropriate dλ and d−1

µ constants. We
can upper bound the computational complexity by the
total size

∑
λ d

2
λ of the f̂λ matrices. Since we only

store the first few low-frequency Fourier components,
the computing complexity is thus strongly polynomial.

In summary, the FFT-based method provides a scal-
able algorithm for computing Fourier coefficients for
f |Sn−1

. The representations that can appear in the com-
putation result is also guaranteed, see proposition 5.

Proposition 5 Given a set of Fourier coefficients for
a distribution f over Sn whose order dominates λ =
(n− p, 1, · · · , 1), the FFT-based method computes a set
of Fourier coefficients whose order dominates λ = (n−
p− 1, 1, · · · , 1) for f |Sn−1

with complexity O(
∑
λ d

2
λ).

4 Marginal Probability Search

Based on previous sections, by exploiting the algebraic
structure of G, we now formally propose a new al-
gorithm – the marginal-based search. This algorithm
searches within the tree of the permutation group Sn,
from the root towards deeper levels, until the group
G is fully identified. Starting from the root, we itera-
tively search and build deeper level nodes based on the
marginal information. If the estimated marginal defined
in (1) is no less than ε times mk (see Theorem 1 from
which we know the left-most node must have nonzero
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Figure 3: (a) Icosahedron. (b) Octopus. (c) Hand. (d)
Human.

Algorithm 1 Marginal-Based Search
Input: A normalized similarity matrix S, ε.
Output: A list of automorphisms characterizing G.
Procedure:
Initialize the tree T of Sn
Estimate a set of Fourier coefficients {f̂λ}.
k ← 0
for k from 1 to n do

Build child nodes for every node on the (k − 1)-th level.
for Each node on the k-th level do
{f̂µ} ← Fourier coefficients of a distribution over Sn−k.
mk ← 0-th order Fourier coefficient of the left-most node.
if The marginal of the node is less than εmk then

Prune the node.
end if

end for
Prune any node which does not have any k-th level children.

end for

Name #Vertices |G| Running time

Tetrahedron 4 24 0.07s

Hexahedron 8 48 1.07s

Octahedron 6 48 0.61s

Dodecahedron 20 120 131.2s

Icosahedron 12 120 49.5s

Table 1: Detecting Symmetries of Regular Polyhedra

marginal), we keep this node; otherwise, we drop it off.4

Such an iterative search algorithm is essentially doing
a sparse pursuit of G within Sn, which takes account
of the group structures of G, see algorithm 1 for the
pseudo code.

Such a marginal-based search algorithm uses a set of
Fourier coefficients to approximate a distribution over
Sn−k for a node on the k-th level. However, since low-
frequency Fourier coefficients characterize a smooth dis-
tribution over all the permutations. We typically ob-
serve that ε will be choosen to be very large, e.g., around
0.8. However, we still have theoretical guarantees about
our approach.

Theorem 6 Suppose S is the first order marginal prob-
ability matrix reconstructed from f̂µ, when all S’s are
block diagonal dominant matrices5 which indicate orbits
partitioning, then Algorithm 1 can find all symmetries
in G.

In the second order matrix case, we restrict our the-
orem to the special case that all points lie in the same
orbit. If all points does not lie in the same orbit, then
the inverse Fourier transform formula will put weights

4When we are done with building the k-th level nodes in the
tree, we also prune the nodes in the current tree which do not
have any k-th level children.

5Entries off blocks are strictly less than entries within blocks
that lie in the same row and column

Figure 4: Searching for G using the marginal-based
search algorithm for the perturbed icosahedron. We
use a simplified notation for each node, for example, the
node of (11)→ (11) denote all permutations that maps
(11, 12)→ (11, 12). The blue nodes are those should be
kept and the red nodes are those should be dropped off
in the groundtruth.

Dodecahedron Icosahedron Octopus Human

Greedy 76.7% 90.8% 81.3% 100%
Eigen 75.8% 85.8% 75.0% 50%

Morgan 72.5% 87.5% 75.0% 50%
Fourier 79.1% 91.7% 87.5% 100%

Table 2: Accuracy of Different Approaches.

Dodecahedron Icosahedron Octopus Human

Greedy 248.71 85.09 5.89 0.59
Eigen 220.35 82.10 5.03 0.17

Morgan 218.92 79.50 5.18 0.17
Fourier 140.04 52.31 2.03 0.41

Table 3: Running Time of Different Approaches.

on different entries in Sij which yield a distribution over
permutations. However, such a distribution is still an
`2 projection of the noised indicator distribution to the
Fourier space.

5 Experiments

We test our algorithm on several examples, including
regular polyhedra and 3D geometric objects. All the ex-
periments are performed in Matlab on a regular desktop
with 2.4GHz CPU and 3G RAM.

The first example is on detecting the symmetries for
all 3D regular polyhedra. We first build a second or-
der similarity matrix S using the continuous Gaussian
kernel sij = exp(−|di− dj |2) where where di (dj) is the
distance between two points in the pair indexed by i (j).
We normalize S and use it as a marginal probability ma-
trix to estimate the symmetry group G by implementing
Algorithm (1). As shown in table 1, our approach can
detect the symmetry group G for all 3D regular polyhe-
dra with reasonable running time. We note that brute
force search for the symmetry group G for dodecahe-
dron and icosahedron would be very difficult, since the
sizes of the permutation groups are 20! ≈ 2.43 × 1018

and 12! ≈ 4.79× 108.
One benefit of the proposed approach of inferring the

symmetry group G is that it can naturally deal with
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noise. As an example, we randomly perturb the vertices
of the icosahedron with certain magnitudes. After that,
we repeat the previous experiment where we build the
similarity matrix, normalize it to get a marginal prob-
ability matrix, and then estimate the symmetry group
G. It turns out that our approach can still find the
symmetry group G for the perturbation with a relative
magnitude up to 0.05 (the edge length is 1).

To demonstrate how the marginal-based search algo-
rithm prunes the nodes in the tree, we show part of
the tree implemented during our experiments in Fig-
ure 4-(a). As we can see from the figure, on the first,
second and fifth level, the nodes that intersect with G
have larger marginals than those that do not. Such a
gap tends to be smaller at certain levels, such as level
3 and 4, thus it is very possible that we may include
some nodes which do not intersect with G during the
implementation of our algorithm. However, it turns out
that when we look several levels down, those nodes will
be dropped. The labeling of vertices of the icosahedron
illustrated in this tree is shown in Figure 3-(a).

As another example, we detect the symmetries for the
octopus, see Figure 3-(b). Unlike the regular polyhedra
examples, the symmetry of the octopus can only be de-
fined as isometries which preserve the geodesic distance,
rather than the Euclidean distance. We use the fuzzy
geodesics proposed in [15] which can be interpreted as
a robust distance measure to get an effective similarity
matrix between pairs. The later routines for inferring
the group G are the same as in previous experiments.
Though in this example the octopus is heavily deformed,
we can still recover the dihedral group as its symmetry
group.

Using the same technique of fuzzy geodesic metrics,
we can get similarity matrix for many other 3D geo-
metric models, such as the hand and human, as shown
in Figure 3-(c,d). We can fully determine the 2-fold
symmetries of the human model using our approach.
However, for the heavily perturbed hand model, many
permutations will be identified to be good ones, among
which the permutations that have the highest values are
still meaningful. For example, the top 2 permutations
being identified are the identity and (1, 2, 3, 4, 5, 6) →
(6, 3, 2, 4, 5, 1).

We finally compare our algorithm with another
greedy heuristics [12] whose pruning criteria is based on
the current maximum distortions. Several other algo-
rithms such as principle eigenvector analysis (spectral
analysis of the similarity matrices), the Morgan algo-
rithm (an iterative procedure to estimate the orbit par-
titioning), and etc [1, 11] can be used as a pre-processing
step which may reduce the size of the searching space.
The comparison of accuracy (how many percentages of
correct symmetries identified) and running time of dif-
ferent approaches are shown in Table 2 and 3. Through-

out these experiments, we distort the geometric models
so that it becomes difficult to recognize all the symme-
tries. Thus, we typically observe that eigenvector anal-
ysis and Morgan algorithm often make errors in iden-
tifying the orbit of the vertices. Whenever such an er-
ror occurs, it decreases the accuracy dramatically. The
greedy heuristic algorithm typically has longer running
time than our proposed Fourier approach.
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