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Robust approximate assembly partitioning
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Abstract

We present a robust approximate assembly partitioning
algorithm for polyhedral parts. We achieve robustness
by applying our controlled linear perturbation strategy
to Minkowski sums of polyhedra and to arrangements
of great circle arcs. Our algorithm is far faster than
a prior robust algorithm based on exact computational
geometry. Its error is small even on degenerate input.

1 Introduction

We present a robust approximate assembly partitioning
algorithm. Given a set of polyhedral parts, the task
is to find a direction in which a subset of the parts
can translate unboundedly without touching the other
parts. Assembly partitioning is a key step in the larger
task, called assembly planning, of devising a sequence of
coordinated part translations and rotations that builds
an assembly from a set of parts. An efficient assem-
bly partitioning algorithm is crucial because assembly
planning is computationally intractable. Halperin [7]
presents a real RAM algorithm for generic input. Ac-
tual input is typically degenerate because useful parts
usually have symmetric features. The robustness prob-
lem is how to implement the algorithm accurately, effi-
ciently, and for any input.

Fogel [4] uses exact computational geometry [9] to
implement Halperin’s algorithm. Error is avoided by
exactly evaluating polynomials in the input parameters,
called predicates, whose signs determine the output. Al-
though most predicates can be evaluated quickly via
floating point filtering [1], near-zero predicates require
expensive rational arithmetic. Typical assembly parti-
tioning tasks have many such predicates, which makes
Fogel’s approach slow. Degenerate (zero value) predi-
cates require explicit handling, which complicates the
algorithm. Exact computation also increases bit com-
plexity, hence memory use, which is the computational
bottleneck for large inputs.

We [8] advocate an alternate robustness strategy,
called controlled linear perturbation (CLP), based on
approximate computation with floating point arith-
metic. CLP uses differential calculus to compute a

∗Department of Computer Science, Purdue University,
eps@cs.purdue.edu
†Department of Computer Science, University of Miami
‡Department of Computer Science, Purdue University

P
1

P
2

P
3

y
x

(a)

P
3

P
2

P
1

P
3

P
2

P
1

(b) (c)

Figure 1: Assembly (a) and directional blocking graphs
for x (b) and y (c).

small input perturbation that makes the output accu-
rate. The running time is insensitive to near-zero predi-
cates, degeneracy handling is avoided, and the bit com-
plexity is low. We use CLP to implement the assembly
partitioning algorithm (Sec. 2). The computational ge-
ometry steps are Minkowski sums, using our prior algo-
rithm [8], and arrangements of great circle arcs, using
a plane sweep algorithm (Secs. 3–4). We demonstrate
that our algorithm is far faster than its exact counter-
part (Sec. 5). Its error is small even on degenerate input.
We conclude with a discussion of the two robustness
strategies (Sec. 6).

2 Assembly partitioning algorithm

The input to the algorithm is n disjoint polyhedral
parts, A = {P1, . . . , Pn}. Let Pi + v = {p + v|p ∈ Pi}
denote the translation of Pi by the vector v. A motion
direction is represented by a unit vector. The direction
d is free for 〈Pi, Pj〉 if (Pi +kd)∩Pj = ∅ for every k ≥ 0;
otherwise d is blocked for 〈Pi, Pj〉. Part Pi can translate
unboundedly along a free d without hitting Pj , but not
along a blocked d. We seek a proper subset, S ⊂ A,
and a direction, d, that is free for every 〈Pi, Pj〉 with
Pi ∈ S and Pj 6∈ S. In Fig. 1a, x̂ is free for 〈P2, P1〉,
and blocked for 〈P1, P2〉 and 〈P2, P3〉. One solution is
S = {P3} and d = x̂; another is S = {P1, P2} and d = ŷ.

The algorithm for a fixed d is combinatorial. Form the
directional blocking graph with a node for each part and
with a link from Pi to Pj if d is blocked for 〈Pi, Pj〉. If
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the graph is strongly connected, there is no solution be-
cause every S ⊂ A has a link from some Pi ∈ S to some
Pj 6∈ S. Otherwise, any component without outgoing
links is a solution. In our example, the x̂ graph com-
ponents are {{P1}, {P2}, {P3}} and the ŷ graph compo-
nents are {{P1, P2}, {P3}} (Fig. 1).

The assembly partitioning algorithm computes a sub-
division of the unit sphere such that all the directions
in each face have the same graph. It traverses the faces
of the subdivision, analyzes their graphs, and returns
the first solution or reports failure. The subdivision is
computed in two steps. 1) Partition the unit sphere into
free and blocked faces for each 〈Pi, Pj〉. The graph has
a link from Pi to Pj for d in the blocked faces of 〈Pi, Pj〉.
2) Compute the overlay of the partitions.

We illustrate the algorithm on an assembly comprised
of ring P1, ring P2, and cone P3 with axis z = (0, 0, 1)
(Fig. 2). Faces e–g of the overlay are in the northern
hemisphere, h straddles the equator, and the southern
hemisphere is symmetric. Face e has solutions with S =
{P1} (Fig. 2c). Face f has one more link, from P2 to
P3, and also has solutions with S = {P1}. Face g has
no solutions (Fig. 2d). Face h has one less link, from P2

to P1, and no solutions.

Figure 3 illustrates step 1 of the algorithm in 2D. A
direction, d, is blocked for 〈Pi, Pj〉 if the ray kd inter-
sects the Minkowski sum

Mij = Pj ⊕−Pi = {a− b|a ∈ Pj , b ∈ Pi},

which comprises the vectors, v, such that Pi + v inter-
sects Pj . Let Qij denote the projection of Mij onto the
unit sphere: a vector, v, projects to v̂ = v/||v||. The
projection is defined because the parts are disjoint, so
(0, 0, 0) 6∈ Mij . The connected components of Qij are
the blocked faces of 〈Pi, Pj〉. We compute them for i < j
and handle Qji = −Qij by symmetry.

Figure 4 illustrates projection. The boundary of Q
is a subset of the projected silhouette edges of M . Let
e = ab denote an edge of M with tail a and head b;
its twin is the edge with tail b and head a. Let e have
tangent u, and faces to the left and right with outward
normals m and n. If a · m > 0 and a · n < 0, e is
a silhouette edge. Project it to the arc, ê, with tail â
and head b̂ (Fig. 4a,c) on the great circle defined by
the plane with normal â× b. Label the silhouette arcs
positive and label their twins negative. Compute the
induced subdivision of the unit sphere. A face is in Q
if its boundary contains a positive edge or if the ray
kd intersects M for any point, d, in its interior. The
blocked faces of Q are bounded by the edges that bound
Q, but whose twins do not.
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Figure 2: Ring assembly (a), overlay (b), and directional
blocking graphs for faces e (c) and g (d).
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Figure 3: Partition: (a) parts; (b) Minkowski sum; (c)
projection.
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Figure 4: Projection: (a) M ; (b) Q; (c) projected edges
with silhouette edges drawn thickly.
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Figure 5: Arrangement algorithm: (a) input arcs; (b)
split points; (c) faces.

3 Arrangement algorithm

We compute arrangements of great circle arcs for pro-
jection and for overlay. The algorithm is a plane sweep,
which splits the arcs at their intersection points to ob-
tain the vertices and edges of the arrangement, followed
by a traversal of the vertex/edge graph, which derives
the faces. Fig. 5 illustrates on the Fig. 4 example.

Preprocessing Split the input arcs (Fig. 5a) at z turn-
ing points (a in Fig. 5b). An arc, e = ab, with normal
n has a turning point if uzvz < 0 with u = n̂× a and
v = n̂× b the tangents at a and b. If uz > 0, e has a
maximum at p̂ with p = sign(nz)(−nx,−ny, 1/nz−nz);
if uz < 0, e has a minimum at −p̂. Splitting the arcs

yields z-monotone edges. Split the edges at intersection
points, q, with the great circle with normal (0, 1, 0) such
that qx < 0 (g and h in Fig. 5b).

Place the incident edges of each vertex, a, in clockwise
order around the outward normal. An edge, e = ab, is
forward or backward if az < bz or bz < az. Forward
edges precede backward edges. An edge with normal
m precedes one with normal n if a · (u × v) < 0 with
u = m̂× a and v = n̂× a the tangents at a. This
predicate is identically zero if a is a z turning point
because u = −v. Instead, the positive edge precedes the
negative edge for aznz > 0 and vice versa for aznz < 0.

Sweep Sweep a plane along the z axis from z = −1 to
z = 1. The plane intersects the unit sphere in a circle.
The sweep list consists of the forward edges that inter-
sect this circle in counterclockwise order. The events
are the input vertices and the intersection vertices (b–
f in Fig. 5b). The z order is calculated by comparing
vertex z coordinates, except that a always precedes or
follows b when a is a z minimum or maximum of e = ab.

An input vertex is handled by removing the twins of
its backward edges from the sweep list, recording the
edge that follows it in the sweep list, inserting its for-
ward edges, and checking if any newly adjacent edges
intersect. Two edges cannot intersect if they come from
the same input arc. Otherwise, edges e = ab with nor-
mal m and f = cd with normal n intersect at an in-
tersection point, p = ±m̂× n, of their great circles if
their tangents at p, m̂× p and n̂× p, have positive z
components and max(az, cz) < pz < min(bz, dz). The
intersection vertex is handled by splitting e into ap and
pb, splitting f into cp and pd, placing the p edges in the
order (pd, pb, pc, pa), replacing e by pd and f by pb in
the sweep list, and checking the newly adjacent edges.

We represent the sweep order as a linear order on
[−π, π]. The transitions between −π and π occur at
vertices because of the preprocessing. If a transition
occurs at a, e = ab is inserted at the start or the end
of the sweep list when by < 0 or by > 0. Otherwise,
e is inserted by repeatedly comparing it to an edge,
f = cd, in the list. If a = c, the sweep order is the
counterclockwise order around a. Otherwise, compute
the sweep order of a and the intersection point, p, of
f with the sweep plane z = az. Edge e precedes f if
ay < 0 and py > 0 or if aypy > 0 and axpy − aypx > 0.

Graph traversal Mark the edges as untraversed. Visit
each vertex in sweep z order and trace an edge loop
starting at each of its untraversed edges. While the
current edge, e = ab, is untraversed, mark it as traversed
and replace it by the successor of its twin among the
edges incident on b. For the first vertex or for a vertex
with an edge that was traversed before it was visited,
each edge loop defines a face. The six faces in Fig. 5c are
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generated in this manner in numerical order. Otherwise,
the first loop is added to the enclosing face and the other
loops define faces. The enclosing face is bounded by the
following edge of the vertex, if defined, or by the first
edge of the previous vertex.

4 Robustness

A direct floating point implementation of the arrange-
ment algorithm is not robust. Even tiny computation
errors can cause a predicate to be assigned the wrong
sign, which can create a combinatorial error in the al-
gorithm output. For this to occur, the predicate must
be unsafe, meaning that its value is on the order of the
computation error. The main cause of unsafe predicates
is degeneracy. A degenerate input manifests itself as a
predicate that evaluates to zero, so approximate com-
putation assigns it an unsafe value.

We prevent unsafe predicates with our controlled lin-
ear perturbation (CLP) algorithm [8]. CLP assigns
signs, si, to a sequence of predicates, fi(x), with in-
put values x = a. It picks a random unit vector, v, and
computes a δ ≥ 0 such that sifi(p) > ε with p = a+ δv
and with ε a safety threshold that depends on f and on
a. If |fi(p)| > ε with the current δ, si = sign(fi(p));
otherwise, si = sign(w) with w = ∇f · v and with ∇f
the gradient, and δ is increased by (sε− f(p))/w to the
minimum value that makes fi safe based on its linear
Taylor series.

We employ the backward error metric: the error in a
computation is the minimum distance from the input to
a perturbed input for which the output is correct. For
a CLP algorithm, the input is a, a perturbed input is
p, and the error is at most ||p − a|| = δ. We assume
that the signs, si, are correct at p, which holds when
the safety thresholds exceed the predicate rounding er-
ror. The rounding error in a single arithmetic operation
is bounded by the rounding unit of µ ≈ 10−16. The
error in a sequence of n operations is exponential in n
in the worst case, but is essentially constant in practice.
We employ a safety threshold of ε = 100µ, which is
conservative by numerical analysis standards given that
n < 50 in our algorithm.

The sign assignment algorithm performs poorly on
singular predicates (∇f = 0). Singularity is much rarer
than degeneracy because both f and ∇f must be zero.
Yet a single singular predicate can invalidate the ar-
rangement computation by increasing δ unacceptably.
The sweep has singularities when vertices coincide with
z turning points. We prevent this by sweeping along a
random axis. This strategy suffices for the arrangement
algorithm. We discuss a general strategy in Sec. 6.

(a)

(b)

(c)

Figure 6: Star puzzle: (a) one part, (b) two parts, (c)
all six parts.

5 Performance

We tested our algorithm on Fogel’s star puzzle example
(Fig. 6). The assembly has six parts that are rotational
images of each other. Each part has 14 boundary tri-
angles. The Minkowski sums and the arrangements are
degenerate because the parts are symmetric, the pairs
consist of isometric parts, and the assembly contains
many isometric pairs. Nevertheless, the backward error
is only δ = 10−12. The running time, on one core of an
Intel Core 2 Duo with 4 GB RAM, is 0.024 seconds with
82% for Minkowski sums, 8% for projection, and 7% for
overlay. This is about 100 times faster than Fogel’s best
time of 5.2 seconds, since our CPU is about 50% faster.

We also tested our algorithm on two engineering ex-
amples. The first is the ring assembly (Fig. 2). Each
ring has 2068 boundary triangles and the cone has 160.
The running time is 3.2 seconds with 94% for the three
Minkowski sums. The error is δ = 4×10−9. The second
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Figure 7: Hinge assembly.

is a hinge assembly comprised of a bolt and two plates
(Fig. 7). The bolt has 160 boundary triangles, the inner
plate has 596, and the outer plate has 572. The running
time is 1.1 seconds with 85% for the three Minkowski
sums. The error, δ = 10−7, is larger than before be-
cause the parts have many parallel boundary triangles,
each of which causes multiple degeneracies.

6 Discussion

The performance of our assembly partitioning algorithm
supports our thesis that the CLP robustness strategy
is accurate, is far faster than exact computation, and
avoids degeneracy handling. One reason for the speedup
is that floating point arithmetic is faster than ratio-
nal arithmetic. A second reason is that we compute
Minkowski sums, which are the dominant cost in assem-
bly planning, via a convolution algorithm that is output
sensitive in practice. Fogel decomposes the polyhedra
into convex pieces by hand, computes the piece sums,
and forms their union. Since the pieces have many non-
input features, the complexity far exceeds the output
size in typical examples. The same is true of a later al-
gorithm that automates the decomposition [6]. We at-
tribute the lack of a robust exact convolution algorithm
to the daunting degenerate cases, including collinear
faces, identical faces, and edges on faces.

Clearance Fogel’s algorithm has the theoretical advan-
tage that it can find solutions where parts have zero
clearance, meaning their boundaries intersect and their
interiors are disjoint, by examining the degenerate faces
of the overlay. We cannot compute faces whose diame-
ter is less than δ. Since the maximal part clearance for
directions on a face is proportional to its diameter, we
are limited to solutions whose clearance exceeds δ.

We see no practical significance to this limitation.
Parts are subject to manufacturing variation and as-
sembly mechanisms are subject to motion variation. An
assembly plan must handle all parts and mechanisms of

a specified accuracy. A plan with a clearance of 10−6

is unsafe for any conceivable accuracy, whereas δ is al-
ways far smaller. The standard planning strategy is to
replace each ideal part by an expanded part that bounds
its shape variation. The simplest and most common re-
placement is the Minkowski sum of the ideal part and
an s-sphere centered at the origin. The existence of an
exact solution for s = k implies the existence of an ap-
proximate solution for s = k + δ. The solutions are
equivalent in practice because δ is negligible with re-
spect to k.

Designers sometimes consider ideal parts before mod-
eling part variation. Assembly plans with zero clear-
ance are then of interest. For example, the star puzzle
is more elegant when the parts fit together perfectly.
We can approximate zero clearance solutions by dilat-
ing the parts by r1 (subtracting a sphere of radius r1)
until an approximate solution is found, expanding them
by r2 until they overlap, and performing binary search
on [−r1, r2] for the smallest parts that yield an approx-
imate solution. We implemented this procedure for the
star puzzle, but using scaling instead of dilation and ex-
pansion. Scaling by 99% yields a solution, scaling by
101% makes the parts overlap, and 7 iterations yield an
approximate solution with δ = 10−12 in 0.17 seconds,
versus 5.2 seconds for Fogel’s fastest run.

Correctness CLP algorithms can fail due to extreme
rounding error, whereas exact algorithms cannot. On
the other hand, exact algorithms effectively halt when
they run out of memory, which already occurs on mod-
est size Minkowski sums. CLP is correct assuming the
same empirical bounds on rounding error that underlie
every numerical library in the scientific computing com-
munity. We have never observed a CLP failure despite
extensive consistency checking of every Minkowski sum
and spherical arrangement that we compute. We aim to
replace this empirical evidence with a rigorous, yet prac-
tical error analysis. One option is to adjust the floating
point precision to match the worst case rounding error,
using an arbitrary precision floating point library, such
as MPFR [5]. Another option is to derive probabilistic
error bounds by comparing the predicate signs due to
several perturbations.

Algorithm design We conclude with a comparison of
algorithm design using CLP versus exact computation.
An exact algorithm has to address degeneracy, whereas
a CLP algorithm does not. Explicit degeneracy han-
dling appears impractical in most 3D algorithms. The
alternative to explicit handling is symbolic perturbation
[2, 3], which yields predicate signs that are correct for an
arbitrarily small input perturbation. Symbolic pertur-
bation further increases the computational complexity
of exact computation. Neither CLP nor exact compu-
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tation with symbolic perturbation can solve degenerate
problems. We have illustrated that degenerate assem-
bly partitioning problems can be solved approximately
with CLP, but the process is not automated.

A CLP algorithm has to address singularity, whereas
an exact algorithm with explicit degeneracy handling
does not, since singularity is a special case of degen-
eracy. An exact algorithm with symbolic perturbation
has to address singularity because it computes the first
non-vanishing derivative of degenerate predicates. The
computational complexity rises sharply with the degree
of singularity.

We classify singularities as artifacts, coincidences,
and special cases. Artifacts occur in algorithms that
impose extra structure on the input, such as the z or-
der in our sweep algorithm. They can be avoided by
randomization. Coincidences occur when combinatori-
ally distinct elements are numerically equal, for example
a · (b × c) with a = b = c. We replace u = b × c by û.
A generalization of this strategy handles any rank defi-
cient determinant predicate. Special cases occur when
the parameters of a predicate are related. We exploit
the parameter relationship to derive an equivalent reg-
ular predicate, such as the clockwise edge order at a z
turn (Sec. 3). We have employed this strategy in several
complicated 3D algorithms and aim to automate it.
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