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Abstract

A colored domino is a rotatable 2 × 1 rectangle that is
partitioned into two unit squares, which are called faces,
each of which is assigned a color. In a colored domino
tiling of an orthogonal polygon P , a set of dominoes
completely covers P such that no dominoes overlap and
so that adjacent faces have the same color. We provide
tight bounds on the number of colors required to tile
simple and non-simple orthogonal polygons. We also
present an algorithm for computing a colored domino
tiling of a simple orthogonal polygon.

1 Introduction

Many results concerning domino tilings have focused on
“colorless” dominoes, which are simply 2 × 1 rotatable
rectangles (see, for example, [5, 3, 8, 6, 7, 4]). A colored
domino is a domino that is partitioned into two unit
squares, each of which is assigned a color. Thus a col-
ored domino models the commonly used domino game
piece. In a tiling that uses colored dominoes, adjacent
faces must have the same color. Results concerning col-
ored domino tilings have only arisen relatively recently
[9, 2]. In the colored domino tiling problems studied
in [9] and [2], a multiset of dominoes is provided, and
in tilings the multiplicity of the dominoes cannot ex-
ceed those in the multiset. In [9], the multiplicity of
the provided dominoes equals that of the multiplicity
of the dominoes used in the tiling. An algorithm is
described for computing colored domino tilings of so-
called “paths” or “cycles”. This algorithm runs in time
linear in the number of dominoes used in the tiling. The
authors of [9] also consider a colored domino tiling prob-
lem where some dominoes have already been positioned
on the polygon, and we are asked to decide if the tiling
can be completed. This problem is shown to be NP-
complete. In [2], Biedl studies two variants of a domino
tiling problem. In the first problem, known as EXACT
DOMINO TILING, the multiplicity of dominoes in the
provided set is equal to multiplicity of the dominoes
used in the tiling. Biedl shows that EXACT DOMINO
TILING is NP-complete, even for a very restricted class
of polygons known as “caterpillars”. It is also shown
that EXACT DOMINO TILING remains NP-complete
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when the dominoes are restricted to three colors. In the
second domino tiling problem studied in [2], which is
called PARTIAL DOMINO TILING, not all the domi-
noes are used in the tiling. It is shown that PARTIAL
DOMINO TILING is NP-complete, and remains so even
for so-called “paths” or “cycles”. It is also shown that
PARTIAL DOMINO TILING is NP-complete when the
dominoes are restricted to three colors.

In the problems that we study, the set of dominoes
used is not a multiset, and each domino can be used an
unlimited number of times. Thus in this kind of colored
domino tiling problem, the set of dominoes provides a
set of possible “types” of dominoes that can be used in
the tiling.

By making a connection between graph coloring and
colored domino tiling, we show that if we wish to tile
a simple orthogonal polygon, then 2 colors are always
sufficient. We also show that if the polygon contains
holes, then 4 colors are always sufficient and sometimes
necessary. We also describe an algorithm for deciding
whether or not a simple orthogonal polygon can be tiled
with colored dominoes. This algorithm is constructive
and actually computes the tiling if one exists. This al-
gorithm runs in time O(n), where n is the number of
dominoes used in the tiling. All our results disallow
monochromatic dominoes, which we call twin dominoes.
The reason for excluding twin dominoes is necessitated
from the problem statement: if we allow twin dominoes
then color becomes irrelevant and the problem reduces
to that of partitioning a polygon into 2 × 1 rectangles.

Due to space constraints, many details have been
omitted in this version of the paper. Complete details
can be found in the long version of this paper [10].

2 Basic Definitions

A colored domino is a rotatable 2× 1 rectangle that has
been partitioned into two colored unit squares, which
we refer to as the faces of the colored domino. Since all
dominoes considered herein will be colored, we will of-
ten refer to “colored dominoes” simply as “dominoes”.
All polygons that we consider are orthogonal polygons
with integer coordinates. We adopt terminology similar
to that found in [9, 2], and refer to such polygons as
layout polygons. We refer to the set of unit squares in-
duced by the integer grid within a layout polygon P as
the squares in P , which are denoted by ρ(P ). A tiling
is a placement of dominoes from a set D onto a lay-
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out polygon P such that each square in P is covered
by exactly one domino face, and adjacent faces of domi-
noes have the same color. We say that p, q ∈ ρ(P ) are
matched under a tiling if p and q are covered by the
same domino in the tiling. A tiling of a layout polygon
P therefore describes a perfect matching of ρ(P ).

We are concerned with tilings that disallow twin
dominoes. Motivated by this restriction, we define Dk

as follows: D1 is a singleton containing a solitary twin
domino, and for k ≥ 2, we define Dk to be the set of

(

k
2

)

non-twin dominoes over k colors.

Definition 2.1 k-tileable: A layout polygon P is k-
tileable if and only if there exists a tiling of P using
dominoes from Dk.

Extending this notion slightly, we define a k-tiling to
be a tiling that uses dominoes from Dk.

3 Leaves, Corners, and Color Partitions

Definition 3.1 Leaf: Let L be a 2×1 subrectangle of
P . Then L is a leaf of P if L contains a square p such
that p is adjacent to exactly one square in ρ(P ).

Definition 3.2 Corner: Let C be a 2×2 subrectangle
of P . Then C is a corner of P if C contains a square
p such that p is adjacent to only two other squares in
ρ(P ).

The following two Lemmas about leaves and corners
will be essential to our algorithm, and will also be useful
when we obtain lower bounds on the number of colors
needed to tile a non-simple layout polygon.

Lemma 1 Let P be a k-tileable layout polygon for k ≥
2 that contains a leaf L. In any k-tiling of P there is
only one domino that intersects with L.

Lemma 2 Let P be a k-tileable layout polygon for k ≥
2 that contains a corner C. In any k-tiling of P there
are only two dominoes that intersect with C.

A key observation about leaves and corners is their
existence in simple layout polygons.

Lemma 3 If P is a simple layout polygon such that
|ρ(P )| ≥ 2, then P contains a leaf or a corner.

The next set of definitions provides a connection be-
tween graph coloring and colored domino tiling. If P is
a layout polygon that has been tiled with colored domi-
noes, then we refer to the color of the domino face that
is covering the square p ∈ ρ(P ) as color(p).

Definition 3.3 Color Partition: Let P be a k-tileable
layout polygon, and let τ be a k-tiling of P . We define
the color partition of P with respect to τ to be a partition
P1, P2, ..., Pm of P that satisfies each of the following
conditions:

1. Pi is a connected set of like-colored squares from
ρ(P ).

2. If pi and pj are adjacent squares from ρ(P ) that are
in different regions from the color partition, then
color(pi) 6= color(pj).

Definition 3.4 Color Partition Graph: Let
P1, P2, ..., Pm be the color partition associated with a
k-tiling τ of a k-tileable layout polygon P . We define
the color partition graph to be a graph with vertices
v1, v2, ..., vm. There is an edge (vi, vj), i 6= j, in the
color partition graph if the partitions Pi and Pj share
an edge on their boundaries.

Notice that if we color the nodes of a color partition
graph G according to the colors of the corresponding
color partitions, then we have a proper k-coloring of
G. Likewise, a k-coloring of G defines a k-tiling of the
original polygon. Thus a k-coloring of a color partition
graph corresponds exactly to a k-tiling. This is the key
observation that is exploited in the following section.

4 Colored Domino Tilings and Graph Coloring

In this section we obtain tight bounds on the number
of colors needed to tile simple and non-simple layout
polygons.

Definition 4.1 Chromatic Number of P : The
chromatic number of a layout polygon P , denoted χ(P ),
is the minimum number k ≥ 2 for which P is k-tileable.

Lemma 4 If P is a k-tileable simple layout polygon
with a k-tiling τ , for k ≥ 2, then the color partition
graph G associated with τ is a tree.

Since trees are 2-colorable, we have the following:

Theorem 5 If P is a k-tileable simple layout polygon
for k ≥ 2, then χ(P ) = 2.

Now we turn our attention to non-simple layout poly-
gons, i.e. layout polygons that contain one or more
holes. We can show that the layout polygon depicted
in Figure 1 requires at least 4 colors in any k-tiling for
k ≥ 2.

Lemma 6 There exists a non-simple layout polygon
that requires at least four colors in any k-tiling for
k ≥ 2.

If we combine Lemma 6 with the fact that any color
partition graph of a layout polygon is planar, and is
therefore 4-colorable, we obtain the following:

Theorem 7 Let P be a k-tileable layout polygon for
k ≥ 2. Then χ(P ) ≤ 4, and this bound is tight.
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Figure 1: A layout polygon P that requires at least 4
colors to tile it. P contains 3 holes, which are depicted
as black rectangles.

5 Computing Tilings of Simple Polygons

Now we turn our attention to an algorithm for the fol-
lowing tiling problem regarding simple layout polygons:

Definition 5.1 TWINLESS TILING: In the
TWINLESS TILING problem, we are given a simple
layout polygon P , and we are asked to decide whether
or not P is k-tileable for k ≥ 2, and if so, we are to
compute such a tiling.

Our algorithm for the TWINLESS TILING problem
operates on the following decomposition of the layout
polygon.

Definition 5.2 Leaf-Corner Decomposition: A
leaf-corner decomposition of a layout polygon P , de-
noted L(P ), is defined recursively as follows: if P

does not contain a leaf or a corner, then L(P ) :=
∅. Otherwise, let X be a leaf or corner of P , and
let P1, P2, ..., Pl be the simple layout polygons obtained
by removing X from P . Then we define L(P ) :=
{X}

⋃

L(P1)
⋃

L(P2)
⋃

...
⋃

L(Pl).

We say that a leaf-corner decomposition L(P ) covers
P if and only if the union of all the members in L(P ) is
P .

Lemma 8 Given a simple layout polygon P and a leaf-
corner decomposition L(P ), if L(P ) does not cover P

then P is not k-tileable for k ≥ 2.

The main objective of our algorithm is to compute
a perfect matching of ρ(P ) that has a special prop-
erty. We ensure that the computed perfect match-
ing of ρ(P ) does not contain any so-called twin-forcing
arrangements:

Definition 5.3 Twin-Forcing Arrangement: Let
P be a layout polygon with a perfect matching M of
ρ(P ). A twin-forcing arrangement is a set of four
squares p, q, r, s ∈ ρ(P ), such that p and q are adja-
cent and matched with each other, while r and s are
adjacent, but r is not matched with s.

Lemma 9 Let P be a simple layout polygon. P is k-
tileable with matching M , for k ≥ 2, if and only if M

is a perfect matching of ρ(P ) that does not contain a
twin-forcing arrangement.

Let C be a corner, from a leaf-corner decomposition
L(P ) of a simple layout polygon P . We can show that
C must be either be matched “vertically” or “horizon-
tally”. The key to our algorithm is noticing that the
matching of a leaf or a corner may “force” neighboring
leaves and corners to be matched a certain way if we
are to avoid twin-forcing arrangements. We say that
two members X and Y of a leaf-corner decomposition
are adjacent if there exists two squares p, q ∈ ρ(P ), such
that p ∈ X , q ∈ Y , and p and q are adjacent.

Lemma 10 Let P be a simple layout polygon with a
perfect matching M of ρ(P ), and a leaf-corner decom-
position L(P ) that covers P . L(P ) satisfies the follow-
ing rules with respect to M if and only if M does not
contain a twinforcing arrangement.

1. For each edge e of each leaf L ∈ L(P ), there is
at most one member of L(P ) that both intersects e

and is adjacent to L.

2. If Ci, Cj ∈ L(P ) are two corners that share and
entire edge, then Ci and Cj are both matched hor-
izontally or they are both matched vertically.

3. If L, Ci ∈ L(P ) are a leaf and a corner such that
L shares and entire vertical (resp. horizontal) edge
with Ci, then Ci is matched vertically (resp. hori-
zontally).

4. If X, Y ∈ L(P ) are both adjacent to a corner Ci ∈
L(P ), such that both X and Y intersect the same
vertical (resp. horizontal) edge of Ci, then Ci is
matched horizontally (resp. vertically).

Now we can describe our algorithm for solving the
TWINLESS TILING problem.

Theorem 11 The TWINLESS TILING problem can
be solved in O(|ρ(P )|) time, or equivalently, O(n) time,
where n is the number of dominoes needed in the tiling.

Proof. The algorithm begins by constructing a leaf-
corner decomposition L(P ) of P . If L(P ) does not cover
P then the algorithm halts and reports that P is not k-
tileable for k ≥ 2. The correctness of this step of the
algorithm is guaranteed by Lemma 8.

Then the algorithm uses rules (1)-(4) of Lemma 10 to
construct a boolean expression φ, which is an instance
of the 2SAT problem. For each corner Ci ∈ L(P ) we
create two variables hi and vi, which correspond to Ci

being matched horizontally and vertically, respectively.
In order to ensure that exactly one matching of Ci is
chosen, we add the following clauses to φ: (hi ∨ vi) and
(¬hi ∨ ¬vi). If rule (1) is violated for any leaf in L(P ),
we add the unsatisfiable clause (false) to φ. We encode
rules (2)-(4) as clauses by inspecting the neighbors of
each leaf and corner in L(P ). If the condition of rule
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(2) is satisfied, then we add the following clauses to φ:
(¬hi ∨ hj), (¬hj ∨ hi), (¬vi ∨ vj), and (¬vj ∨ vi). If the
condition of rule (3) is satisfied, we add the following
clause to φ: (vi) (resp. (hi)). For rule (4) we condition-
ally add the following clause: (hi) (resp. (vi)).

By construction, φ is satisfiable if and only if L(P )
conforms to rules (1)-(4) of Lemma 10. Furthermore,
a satisfying assignment of φ corresponds exactly to a
perfect matching M of ρ(P ), and by Lemma 10, M

does not contain a twin-forcing arrangement. Thus by
Lemma 9, φ is satisfiable if and only if P is k-tileable.
Thus we can decide if P is k-tileable for k ≥ 2 by solving
the 2SAT problem on φ.

To construct a tiling of P , we observe that M is a
matching of some 2-tiling (see full version for details).
We compute the colors of the dominoes in a 2-tiling
of P as follows. We color an arbitrary square p ∈ ρ(P )
using the color black. Then we proceed using DFS, only
visiting those squares that are uncolored. When we visit
a square q, we assign a color to q based upon the color
of a neighboring square: if a neighbor is colored black,
and q is matched with this neighbor, then q is colored
white, otherwise q is colored black. Since DFS is used
to visit the squares, each square is assigned a color, and
we are guaranteed that no twin dominoes arise since M

is the matching of a 2-tiling.

Before considering the time taken by our algorithm,
we make an important note concerning the input to our
algorithm. The time taken by algorithms that operate
on polygons is typically expressed in terms of the num-
ber of vertices that the polygon has. This presents a
problem for the TWINLESS TILING problem since we
can describe a layout polygon with O(1) vertices that
contains an arbitrary number of squares. Although we
can deal with this problem in a number of different ways,
we adopt the following assumption: the layout polygon
P is described by ρ(P ) in the input in the form of an
adjacency list of squares and neighbors. Using this as-
sumption, we can access the neighbors of each square in
O(1) time since each square has at most four neighbors.

L(P ) can be computed in O(|ρ(P )|) time as follows.
First we identify all the leaves and corners in P by ex-
amining each square and its neighbors. Place each of
these leaves and corners in a list called T . Then re-
move the next item from T and call it X . If any of the
squares in X are marked, then ignore X , otherwise add
X to L(P ) and mark all the squares in X . After mark-
ing the squares in X , add any new leaves or corners that
are created to the list T . This procedure stops after
O(|ρ(P )|) steps. Computing φ can clearly be accom-
plished in O(|ρ(P )|) time by examining the O(1) neigh-
bors of each leaf and corner from L(P ). Notice that φ

has O(|ρ(P )|) clauses. Thus a satisfying assignment of
φ can be computed in O(|ρ(P )|) time using the algo-
rithm from [1]. Assigning colors to the squares in ρ(P )

uses DFS and hence can be accomplished in O(|ρ(P )|)
time. �

6 Open Problems

We are interested in characterizing the layout polygons
that require at most 3 colors in any k-tiling for k ≥ 2.
Since the submission of this paper, we have shown that
the TWINLESS TILING problem is NP-complete for
non-simple polygons.
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