
Computing the Widest Empty Boomerang

Boaz Ben-Moshe∗ Binay Bhattacharya∗ Qiaosheng Shi∗

Abstract

In this paper we consider the following obnoxious
facility location problem: given a set S of n points
in the plane, and two special points a and b, find the
1-corner polygonal chain (also known as boomerang)
connecting a and b such that its minimum distance to
S is maximized. In other words: find the widest empty
polygonal chain of two edges having extremes anchored
at a and b. We present a new O(n log n) algorithm
which improves the previous O(n2) result [3].

1 Introduction

Facility location problems have been extensively studied
by researchers from operations research and computa-
tional geometry. The classical p-center problem is to de-
termine a set of facilities to service a set of clients, which
minimizes the maximum distance between a client and
the closest facility to which it is assigned.

In this paper we consider a variant of the facility lo-
cation problem where the clients are represented by a
set of points in the plane and we are required to locate
one facility (an anchored 1-corner polygonal chain) so
that the smallest distance from the points to the facility
is maximized. Such problem is known as the obnoxious
(undesirable) facility location problem.

Possible applications such as transporting hazardous
material can be modeled as an obnoxious facility loca-
tion problem. Other applications may involve ’robot-
motion’, for instance the problem of computing widest
path which avoids collisions is an important tasks in
robotics (e.g. [2]). In this sense the solution to the sug-
gested problem gives a path with maximal clearance.

Several optimization problems which involve finding
a 1-corner chain using a minimax criterion, have been
posed by Glozman, Kedem and Shpitalnik [4]. Dı́az-
Báñez and Hurtado [3] suggested another version of 1-
corner chain optimization problem, and gave an O(n2)
algorithm for it. In this paper we consider the last prob-
lem (1-corner obnoxious chain optimization) and sug-
gest an improved O(n log(n)) algorithm for it.

The outline of the paper is as follows. In Section 2
we study the configuration cases that characterize the

∗School of Computing Science, Simon Fraser University, Burn-
aby BC, Canada V5A 1S6 {benmoshe,binay,qshi1}@cs.sfu.ca
∗Research supported by NSERC & MITACS.

optimal solutions. A linear time algorithm is given to
solve the decision version of the problem: Given r, does
there exist any 1-corner chain from a to b so that the
minimum distance of the points of S to the chain is at
least r. We are assuming that the sorted lists of points
of S around a and b are known. In Section 3 we present
the main algorithm for computing the set (R) of all the
critical radii which can be candidates for an optimal ra-
dius. It is shown that R is of linear size and can be
computed in O(n log n) time. Once R is known, the op-
timal minmax solution can easily be found in O(n log n)
time by applying the decision problem logarithmic num-
ber of times.

2 Preliminaries

In this paper we assume that a is to the left of b and ab
is a horizontal. Moreover we will only consider the lo-
cation of the boomerang above ab only (all other input-
cases can be transformed to the above one using a linear
rotation and flip operations). It is clear that the solu-
tion to the 1-corner polygonal chain problem might not
be unique. Our objective in this paper is to find one
optimal configuration. Observe that the following is an
equivalent definition of the problem: given a set S of
points, let Sr denote the set of (open) circles of radius
r - centered at each point of S. Find the largest value
r for which there exists a point t that are visible from
both a and b, i.e. there exists a two-segments polygonal
chain (from a to b) which does not penetrate any circle.
More formally, we want to find the maximum value r∗

for which vis(a, Sr∗) ∩ vis(b, Sr∗) is not empty, where
vis(a, Sr) is the set of all points (in R2) which can be
seen from a.
Given a 1-corner chain C, the locus of points at a dis-
tance r from C is called a boomerang centered at C and
radius r. The boomerang is anchored if C is anchored.
Our problem is to find an empty boomerang with the
largest radius.

2.1 Computing the visibility picture from a

Given a radius r we would like to order around a all the
circles in Sr which are at least partly visible from a. Let
V (a, Sr) be the set of circles that can be seen from a.
Without any loss of generality, suppose a is the origin
of the system. The blocking angle of a circle from a is
defined to be the angle that the circle subtends at a. The

1

blocking angle of a circle ci of radius r with the center
at pi is represented by [lti, rti] where lti and rti are
the polar angles of the left and the right tangent points
respectively of the circle ci, Since all the circles have
the same radii, only one single contiguous part (arc) of
each circle (in V (a, Sr)) is visible from a. Therefore the
circles in V (a, Sr) can be ordered by their blocking angle
as seen from a. Moreover, it is clear that if r1 < r2,
then V (a, Sr1) ⊃ V (a, Sr2). Therefore, each ordered
set V (a, Sr), is an ordered subset of V (a, S0) which is
simply the original points of S sorted around a.

Lemma 1 Given a radius r and a set S of all points
sorted around a, one can compute V (a, Sr) in linear
time.

Proof. It is assumed that the points in S are sorted
in increasing polar angle with the origin at a. Without
any loss of generality we assume that < p1, p2, . . . , pn >
is the sequence of points in increasing polar angle. The
algorithm can be described as follows:
1. ST ← new stack, max← 0.
2. Visit each point pi ∈ S in increasing polar angle.
(Let ci be the circle of radius r, centered at pi)
3. Compute the blocking angle [lti, rti] of ci.
4. if(lti > max) {Otherwise, ci is invisible from a. }
4.1 max← lti.
4.2 Pop from ST all ranges blocked by [lti, rti].
4.3 Update the range of cj (top of ST) effected by ci.
4.4 Update the range [lti, rti] of ci effected by cj .
4.5 Push the updated range onto ST .

The correctness of the algorithm follows easily from
the following invariant that was maintained throughout.

Invariant 1 (i) A circle which was removed from the
stack is invisible (blocked by the circles in ST).
(ii) The top circle in ST is visible (it is not totally
blocked by the other circles in ST).
(iii) ST is an angle-ordered set, (by construction we
only insert maximal circles to ST and the ranges are
not overlapping – again by construction).

The running time of the algorithm is clearly linear once
the points of Si are already sorted around a. �

Lemma 2 Linear-time decision algorithm
Given a problem instance (i.e. S, a, b and a radius

r), one can check in O(|S|) time whether there is an 1-
corner polygonal chain (from a to b) such that its min-
imum distance all the points of S is at least r.

Proof. We assume that two radially sorted instances
of S around a and b were pre-computed. We can then
compute V (a, Sr) and V (b, Sr) (lemma 1) in linear time.
The angular order of these arrays (each of linear size) al-
low us to sweep them (merge-like), one in counterclock-
wise order around a and the other in clockwise order

around b. This way we can test in O(n) time whether
vis(a, Sr∗) ∩ vis(b, Sr∗) is none-empty. Therefore, the
total running time is clearly linear. �

2.2 Critical points and critical radii

A boomerang of radius r is called maximal if its ra-
dius can not be increased. The points of S that deter-
mine a maximal empty boomerang (these points lie on
the boundary of the boomerang) are called the critical
points. The radius of the maximal empty boomerang is
called the critical radius (see formal definition below).

Lemma 3 [3]
Let C∗ be an optimal 1-corner polygonal chain and let
r∗ be the critical radius. The possible positions of the
critical points for C∗ falls in one of the three cases pre-
sented in figure 1. Case 1 has a similar configuration
for the segment incident at b.

case 1 case 2 case 2a

Figure 1: Cases of critical points

Denote by critical radius a positive value r′ for
which one of the following holds: (i) case 1: V (a, Sr′)
or V (b, Sr′) are topologically different1 from V (a, Sr′+ε)
or V (b, Sr′+ε). (ii) case 2: V (a, Sr′)

⋂
V (b, Sr′) is topo-

logically different from V (a, Sr′+ε)
⋂

V (b, Sr′+ε)
Let C be an 1-corner chain < a, t, b > for an arbitrary

location t (above ab). Consider a line l through at. Let
CHl denote the convex hull of the points lying to the
right of l. The necessary conditions for a point q to be
a critical point of c are: (a) q must lie on CHl, (b) q is
visible from a, and (c) the orthogonal projection point
of q on l lies above a. Let ca and c′a be the two points of
CHl such that any vertex in [ca, c′a] is a potential critical
point for a given l. [ca, c′a] is the counterclockwise chain
of CHl from ca to c′a. Consider an edge e in [ca, c′a]. If
the segment at is parallel to e, the critical radius must be
the perpendicular distance between l and edge e. Let e
and e′ be two edges of [ca, c′a] incident on a vertex p. If p
is a critical vertex, the critical radius must lie between
the critical radii of e and e′. The above discussions
imply that: (i) Each vertex p of [ca, c′a] determines a
range of radii that contains the critical radius if p is a
critical point of c. (ii) The range of radii determined
by p is smaller than the range of radii determined by
any vertex q if p is nearer to ca than q. (iii) If p and
q are adjacent, the intersection of the ranges of radii

1Looking at the relations between visible ranges within a set.

2

determined by them is the radius determined by the
edge pq.

Lemma 4 All the critical radii ranges determined by
the vertices of [ca, c′a] monotonically increase as one tra-
verses the chain from ca to c′a.

3 Computing the critical-radii set

In this section an O(n log n) time algorithm is presented
for computing the set R of all critical radii for the seg-
ment anchored at a. Only the case when the empty
boomerang lies above ab is considered (the case when
the boomerang is below ab is similar). We will sepa-
rately compute the set of such radii for the cases men-
tioned in figure 1, namely; case 1 and case 2 (which
also includes case 2a, a special sub-case of Case 2).
For both the cases a radial sweep ray (in counterclock-
wise order when centered at a and in clockwise order
when centered at b) is used which stops at every point
pi ∈ S. The sweep starts with the ray pointing down-
wards. When we talk about the angle of a point p at a
(b), we mean the counterclockwise (clockwise) angle p
makes with the downward vertical ray at a (b). The
convex-hull of all the points lying to the right (left)
of the ray at a (b) is maintained using an incremen-
tal constant amortized time convex-hull algorithm [6]
(the points are inserted according to their radial order
around a (b)).

3.1 Case 1

The initial position of the sweep ray is pointed down-
wards. Let p1 be the first point the sweep ray encoun-
ters. The points are relabeled such that the sweeping
ray hits pi immediately after pi−1 is encountered. A
similar algorithm is applied for computing the critical
radii for the segment anchored at b. Suppose the sweep-
ing ray stops at the point pi ∈ S (Fig. 2 left). We
compute CH ~api

which is the convex hull of the points
{p1, p2, . . . , pi−1}. Let [cpi

, c′pi
] be the counterclockwise

chain of CH ~api
such that any point q on [cpi , c

′
pi

] satis-
fies the necessary conditions for q to be a critical point
for the ray ~api. Clearly, ca = pi−1. c′pi

can be eas-
ily computed in logarithmic time once CH ~api

is known.
Once the chain [cpi

, c′pi
] is identified, the vertex q of the

chain such that the points pi and q determine a critical
radius can be identified. Since the critical radii ranges
of the vertices of the chain [cpi , c

′
pi

] are monotonic, the
point q can easily be identified in O(log n) time. Once q
is known, the critical radius, determined by pi and q, is
easy to compute. Note that no other point of [cpi

, c′pi
]

can determine a critical radius with pi. Thus the total
time required to compute all O(n) critical-radii of case
1 type is O(n log(n)).

cpi

a

pi

CH ~api

l

q

p2

p1

p3

p4

p7

p9

p12

p11

p10 p8

p5

p6

bac′
pi

Ta(S)

l∗

Figure 2: Left: binary search for the vertex (q) for which
dist(pi, l

∗) = dist(q, l∗) = dist(CH ~api
, l∗) = r∗, where

r∗ is the critical radius. Right: the tree like structure
Ta(S) of the incremental (a-angle ordered) convex hull.

3.2 Case 2

In this case we are interested in computing the critical
radius of type case 2, if any, for each point pi. Three crit-
ical points that determine the critical radius are needed
to be identified. One of them is pi. When processing pi,
the convex-hull of the vertices that lie to the right of ~api

and to the left of ~bpi is needed in order to determine the
critical points. Let Spi

denote the points whose convex
hull is needed. We can compute the left visible convex
chains of the points to the right of ~api in an incremental
fashion as follows. Let < u0 = pi−1, u1, . . . , uk > be the
left visible convex chain in counterclockwise order when
the sweep ray at a visits pi. A simple linked list data
structure is used to store the chain. When the sweep
ray visits pi, the left visible convex chain can be ob-
tained by adding the tangent edge from pi to the chain
< u0 = pi−1, u1, . . . , uk > at some uj . The updated
left convex visible chain is < pi, uj , uj+1, . . . , uk >. The
amortized cost of computing the tangent edge piuj is
constant. We can access the left visible convex chain
when the sweep line is next at pi+1 by just following the
counterclockwise neighbor link starting from pi. The
union of all the left visible convex chains after process-
ing pi, i = 1, 2, . . . , n form a tree like structure Ta(S)
as shown in Figure 2 (right). This tree structure Ta(S)
can be preprocessed in linear time [1] so that the follow-
ing operations can be performed on Ta(S) (details are
omitted due to space constraints):
1. Any node in the tree can be accessed from the root
in logarithmic steps.
2. For an arbitrary node q, the left visible convex hull
chain can be partitioned into O(log n) pieces.
3. Any node in the tree can be accessed from any other
node in the tree in logarithmic time.
4. For an arbitrary node q, any O(log n) binary search
query nodes on the path from q to the root can be iden-
tified in O(log n) time.
A similar tree structure Tb(S) is constructed by sweep-
ing a ray in clockwise order with the origin at b. This
tree structure is also preprocessed for efficient queries.

3

Once we have preprocessed the tree structures
Ta(S) and Tb(S), each data point pi is treated in the
following way: (Let Spi denote the set of points that
are processed by both the sweep rays anchored at a
and b before processing pi.)
1. Compute the point of Spi

, say ca, which determines
the largest angle at a.
2. Compute the point of Spi

, say cb, which determines
the largest angle at b.
3. Determine the left visible convex chain of Spi

starting from ca.
4. Determine the right visible convex chain of Spi

starting from cb.
5. Determine c∗a in the left visible chain and c∗b in the
right visible chain such that c∗a, c∗b and pi together
realize a critical radius of Case 2 type. Note that if c∗a
and c∗b are the same, we have the case 2(a).

A simple way to implement the first two steps can
be done by using a 2D-range query data structure. We
transform each point pi ∈ S to a point (αi, βi) where
αi is the angle of pi at a βi is the angle of pi at b.
Given a point (αi, βi), transformed from pi, ca (cb) is
the right most (top most) point to the left of αi and
below βi. Similarly cb is the top most point below βi

and to the left of αi. Using the priority search tree [5]
of S, both ca and cb can be computed in O(log n) time.
The preprocessing time taken is O(n log n). The stor-
age space requirement is linear. Steps 3 and 4 can be
implemented in O(log n) time using spine tree decom-
position [1]. The pairs c∗a and c∗b can be found by using
two-stage binary search one on the left visible convex
chain of Spi and the other on the right visible convex
chain Spi

. We first query a middle point qa on the left
visible convex chain and test if qa satisfies the necessary
conditions for a critical point. If not, the chain from qa

to the root in Ta(S) can be ignored. Suppose qa satisfies
the necessary conditions for a critical point. We then
determine the minimum critical-radius rqa allowed by qa

and search for the corresponding qb whose critical radius
range contains rqa

. Last, we test the distance between
the corresponding intersection (t) of the tangents and
pi (see figure 3). If this distance is bigger then rqa , the
critical radius if exists must be larger than rqa . There-
fore, the left visible convex chain [ca, q) and the right
visible convex chain [cb, qb) can be ignored. Otherwise
(the critical radius is smaller than rqa

) chains (qa, c′a]
and (qb, c

′
b] can be eliminated. Once qa, qb and rqa

are
known, t can be computed easily in O(1) time.

Observe that there could be at most one critical ra-
dius of type case 2 for each point pi. The spine tree de-
composition of Ta(S) and Tb(S) allows one to generate
each query probe in amortized constant time. The total
cost of generating probes on the left chain is O(log n).
On the surface, it looks as if there will be O(log2 n)

query probes on the right chain. However, using the
the decomposition tree, one can show that there are
only O(log n) query probes for the right convex chain
as well. Therefore,

Lemma 5 The set of all critical radii of case 2 is of
linear size, and can be computed in O(n log n).

pi

ca
cb

t∗

a b

c∗a

c∗b

ta
tb

CHr(Spi)

CHl(Spi)

Figure 3: case 2: Two steps: first find the points ca and
cb, then use a binary search to find pairs (c∗a, c∗b).

4 Determining the optimal radius

In this section we use the set (R) of all computed radii,
to search (binary) the biggest radius r∗ ∈ R for which
an 1-corner polygonal chain exists. Since each decision
problem can be solved using the linear time decision
algorithm (see lemma 2), therefore

Theorem 6 The widest empty 1-corner polygonal
chain problem can be solved in O(n log(n)) time.

Corollary 7 Given an ellipse E centered at a and
b, the suggested algorithm can be modified to find the
widest 1-corner polygonal chain within E in O(n log(n))
time. This improves the previous O(n2) result [3].

References

[1] R. R. Benkoczi and B. K. Bhattacharya. Spine tree de-
composition. Technical Report TR 1999-09, SFU-CS-
School, 10 1999.

[2] S. W. Cheng. Widest empty L-shaped corridor. Internat.
J. Comput. Geom. Appl., 58(6):277–283, 1996.

[3] J. M. Dı́az-Báñez and F. Hurtado. Computing obnoxious
1-corner polygonal chains. Computers & Operations Re-
search, to appear, 2005.

[4] A. Glozman, K. Kedem, and G. Shpitalnik. Computing
a double-ray center for a planar point set. Internat. J.
Comput. Geom. Appl., 9(2):109–124, 1999.

[5] E. McCreight. Priority search trees. SIAM J. Computing,
14, 1985.

[6] F. P. Preparata and M. I. Shamos. Computational Geom-
etry: An Introduction. Springer-Verlag, 1985.

4

