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Abstract

In general, guaranteed-quality Delaunay meshing algo-
rithms are difficult to parallelize because they require
strictly ordered updates to the mesh boundary. We
show that, by replacing the Delaunay cavity in the
Bowyer-Watson algorithm with what we call the cir-
cumball intersection set, updates to the mesh can occur
in any order, especially at the mesh boundary.

To demonstrate this new idea, we describe a 2D con-
strained Delaunay meshing algorithm that does not en-
force strict ordering of vertex insertions near the mesh
boundary. We prove that the sequential version of this
algorithm generates a mesh in which the circumradius
to shortest edge ratio of every triangle is /2 or greater,
as long as every angle interior to the polygonal input do-
main is at least 90°. We briefly touch upon the parallel
version of this algorithm, but we relegate a more com-
plete discussion (with extension to 3D) to a forthcoming

paper.

1 Introduction

In our previous work [9], we developed and proved cor-
rect a guaranteed—quality parallel 3D Delaunay refine-
ment algorithm for polyhedral domains without obtuse
boundary angles. The proof of correctness requires a
preprocessing step which generates a potentially dense
surface mesh on the boundary 99 of an input domain
Q) containing no edge longer than the minimum local
feature size [10] of Q. Preprocessing 92 in this way is
required by the proof of correctness to prevent concur-
rent vertex insertions from violating the invariants of
the corresponding sequential algorithm (Section .

The resulting tetrahedral mesh may be unnecessarily
dense, so it would be advantageous to avoid this expen-
sive preprocessing step altogether. Furthermore, it is
not obvious how to extend our previous algorithm to
more complicated problems, such as meshing domains
with sharp angles [12, 4 3] and generating meshes with-
out slivers [8] 2].
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In this paper, we show how to solve the former prob-
lem by augmenting the Delaunay cavity of the Bowyer-
Watson algorithm [I} [14] with what we call the circum-
ball intersection set (the latter problem is relegated to
future work). When combined with a suitably modified
constrained planar Delaunay meshing algorithm (Sec-
tion, the circumball intersection set allows arbitrarily
ordered point insertions without jeopardizing the termi-
nation and quality guarantees of the meshing algorithm.

When a triangle f in the mesh is refined by its circum-
center v, we search for the set C of triangles whose cir-
cumscribing 2-balls (circumballs) intersect the circum-
ball of f. We show that, if the set C contains one or
more encroached subsegments whose minimum-radius
(diametral) circumballs enclose v, then v should be dis-
carded and the midpoint of one of the encroached sub-
segments should be added to the mesh instead.

In other words, we only need to examine a local region
of the mesh close to v (but potentially larger than the
Delaunay cavity) to determine if adding v to the mesh
would result in new short edges. We can therefore avoid
the usual requirement of most Delaunay meshing algo-
rithms [I0) 1T, 13] that subsegments be unencroached
before adding new interior vertices into the mesh.

We show that a simple 2D algorithm with this mod-
ification (Section |3)) generates a constrained Delaunay
triangulation (CDT) [5] of the input domain in which
every triangle ¢ has a circumradius to shortest edge ra-
tio (ratio(t)) no greater than v/2. Further, as a result of
allowing poorly-shaped triangles to be refined in any or-
der, this new algorithm is straightforward to parallelize
using some of the proof machinery from our previous
work [9] (Section [4)).

2 Strict Ordering, Violating Invariants

Sequential Delaunay meshing algorithms guarantee
quality by enforcing a strict ordering of vertex inser-
tions on or near the domain boundary. It is this strict
ordering near the boundary that complicates parallel
meshing algorithms—far away from the boundary, the
meshing process requires no more than maintaining the
Delaunay property of the mesh [6].

In particular, most existing algorithms require that
subsegments be unencroached before new interior ver-
tices can be added to the mesh. Not adhering to this



order—when concurrently inserting vertices into a dis-
tributed mesh, for example—can lead to a violation of
the primary invariant of these algorithms: that no edge
in the resulting mesh is shorter than the local feature
size, 1fspen(p) [10].
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Figure 1: A typical invariant is wviolated. d =
mingeq 1£s(p) and dy > dv/2. €” is encroached upon
by input vertex x, but this is not resolved before adding
v to the mesh. Consequently, v encroaches upon the
subsegment e with |e| < 2 -d, violating a typical invari-
ant that encroached subsegments have length greater
than 2 - d.

Consider a typical 2D algorithm [10] that enforces two
invariants: (i) refined subsegments have length at least
2-d, and (ii) refined triangles have a radius greater than
dv/2, where d = min,cq 1£s(p). Figure || depicts what
happens if vertices inserted near the boundary are not
properly ordered. A new vertex v is added to the mesh
to refine a poorly-shaped triangle, but because v is too
close to the subsegment e, subsegment e with |e| < 2-d
is created and is encroached upon by v, violating the
first invariant described above.

In many respects, this is an implementation issue,
since we could enforce this precondition on vertex inser-
tions with an oracle that, for each new vertex v, answers
the query “does v encroach upon an already encroached
subsegment e?” If such a subsegment e does exist, then
e would be refined instead of inserting v into the mesh.
The Delaunay cavity can serve this purpose efficiently
when all subsegments are unencroached before a new
vertex is inserted. It is not difficult to show that subseg-
ments encroached upon by v appear on the boundary of
the Delaunay cavity for v, so the search for encroached
subsegments is a local operation.

However, such an oracle is probably difficult to im-
plement in general, and would almost certainly be in-
efficient for parallel meshing. Instead, we can take ad-
vantage of the fact that most Delaunay meshing algo-
rithms insert new vertices inside the circumball of some
poorly-shaped triangle E Because of this property, it is

1One notable exception is the sink insertion method proposed
by Edelsbrunner and Guoy [7].

possible to answer the query described above by search-
ing the mesh in a region near a to-be-refined triangle. In
the following section, we describe our approach within
the context of a simple guaranteed-quality 2D Delaunay
meshing algorithm.

3 An Algorithm for 2D Meshing Using Arbitrarily
Ordered Vertex Insertion

Let Q be a polygonal input domain with boundary 0€2,
possibly with interior, non-degenerate segment-bounded
holes. Assume that no interior angle in 052 is less than
90°, and let d be the minimum distance (through Q) be-
tween any two non-incident vertices or segments in 95).
The output of Algorithm|[I]is a mesh M (K, D) compris-
ing two simplicial complexes: KC, containing vertices and
subsegments, and D, containing vertices, edges, and tri-
angles. Upon completion, each subsegment e € K has
length at least d, and each triangle f € D has a circum-
radius to shortest edge ratio (ratio(f)) no greater than
V2.

In the algorithm that follows, we use Os to mean the
minimum-radius open 2-ball (circumball) circumscrib-
ing the vertices of s. For example, if e is a subsegment,
then Oe is the open 2-ball having e as a diameter.

Algorithm 1 Create a 2D CDT M (K, D). M consists

solely of triangles f with ratio(f) < /2. The triangles

refined by Main Loop can be chosen in any order.

SeqArbitrarilyOrdered2D ()

Input: Polygonal domain 2 C R? with no interior an-
gle less than 90°.

Output: M(K,D), a constrained Delaunay mesh such
that Vf € D, ratio(f) < /2

Initialize M:

Let K and D be the boundary and interior triangula-
tions of the CDT of €.

Main loop:
while 3f € D and ratio(f) > v/2 do

Refine(f)
end while

Refine(f):
¢ « circumcenter(f)
C={geD>0gnof+#0}
if dJe € (CNK) 3: ¢ € 0e and e N Of not contain an
endpoint of e then
Insert the midpoint of e into K and D
else

Insert ¢ into D
end if

It is important to note that no particular order is im-
posed on the triangles chosen for refinement. Moreover,



all decisions regarding mesh boundary updates are con-
fined to a region of the mesh near each newly inserted
vertex. These properties are due to the circumball inter-
section set, C, an edge-connected set of triangles whose
circumballs intersect the circumball of a refined triangle
f. Cis a superset of the Delaunay cavity of the circum-
center ¢ of f, the edge-connected set of triangles whose
circumballs enclose c. Like the Delaunay cavity of ¢, C
can be computed by a graph search starting from the re-
fined triangle f El, the implementation of which is only a
minor change to an existing Bowyer-Watson implemen-
tation.
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Figure 2: Case (1.7). v cannot encroach upon e without
the circumball of radius d; > dv2 intersecting both ¢’
and the circumball of the triangle containing e’. The
algorithm does not insert v in this case, so the problem
depicted in Figure [1| cannot occur.

The following lemma establishes the correctness of Al-
gorithm

Lemma 1 Let d = minyeo1fs(p). The following in-
variants hold after each iteration through Main Loop:

1. Each refined subsegment has length at least 2 - d.

2. FEach refined subfacet has circumradius greater than

dv/2.

Proof. [Sketch] We show by contradiction that each
invariant holds:

Invariant 1: each refined subsegment e has length |e| >
2-d.

Assume that the first failure of the algorithm is a sub-
segment e with |e|] < 2-d. The vertex v causing the
refinement of e cannot be in IC, since all vertices in K
are at least distance d (through the mesh) from the mid-
point of e, and M is constrained Delaunay. Therefore,
v must be a triangle circumcenter that either (i) was
successfully added to the mesh in a previous iteration,
or (ii) was not added to the mesh in the current itera-
tion because it encroached upon e. In either case, the
circumradius of the refined triangle f was greater than

2Unlike the Delaunay cavity of ¢, edges in the boundary of C
are not necessarily visible to c.

dv/2, otherwise refining f would have been the first fail-
ure of the invariants.

Case (i): v is an existing interior mesh vertex (this fail-
ure is depicted in Figure |1f):

At the time v was added to the mesh to refine f, there
was a triangle g that contained the subsegment €’ D e,
and g did not appear in the circumball intersection set
C of v (otherwise, the algorithm would not have added v
to the mesh). This implies that either the path through
the mesh from f to g contains triangles not in C, or
the circumball of the triangle g containing e’ did not
intersect O f.

The first case does not affect correctness since f and
g are constrained Delaunay and e is the first failure, so
assume that Of NOg = 0. By assumption, radius(f) >
dv/2 and v is within d of €/, so necessarily Of N Og #
0 (Figure . However, this means that g must have
appeared in C, a contradiction. Therefore, this case
cannot occur.

Case (ii): v is the circumcenter of triangle f that was
not added to the mesh in the current iteration because
it encroached upon e:

Because D is constrained Delaunay, v would be too far
away to encroach upon e unless Of enclosed a vertex u
of e. However, the algorithm checks for this case and
would not have refined e, a contradiction.

Since both cases result in a contradiction, Invariant
1 must hold after each iteration of Main Loop. This
ensures that no subsegment shorter than d is ever intro-
duced into the mesh.

Invariant 2: each refined subfacet f has radius(f) >

dv/2.

Assume the first failure is the refinement of a triangle
f with radius(f) < dv/2. Because this is the first fail-
ure, every subsegment has length at least d (Invariant
1), and every edge resulting from inserting a triangle
circumcenter has length greater than dv/2. Therefore,
the shortest edge of f must have length at least d, so
ratio(f) < V2. But, f would have been refined only
if ratio(f) > v/2, a contradiction. Therefore, this case
cannot occur. O

This proof shows that the invariants hold throughout
the algorithm, which allows us to prove the following
properties of the resulting mesh:

Theorem 1 Algorithm SeqArbitrarilyOrdered2D ter-
minates, and the resulting mesh M has the following
properties:

1. The length of every edge in M 1is at least d.

2. For every triangle f € M, ratio(f) < /2.



3. The minimum triangle angle is 20.7°.

Proof. Note that exactly one new vertex is added to
the mesh each time through Main Loop. From Lemmall]
we know that no two vertices of the mesh are ever closer
than d, therefore the algorithm must terminate since
only finitely many edges of length d can be placed within
Q (a finite area). Termination is enough to guarantee
the bound on triangle circumradius to shortest edge ra-
tio, and the bound on the minimum angle follows. [

4 A Brief Note on Parallelization

The following observation is a direct consequence of
Lemma [T}

Corollary 2 ([9]) The correctness of SeqArbitrarily-
Ordered2D does not depend on the order in which any
two triangles are refined in Main Loop.

This is in fact the only statement in our previous se-
ries of proofs [9] whose correctness is directly dependent
upon the behavior of the sequential meshing algorithm.
We therefore make the following conjecture that ParAr-
bitrarilyOrdered2D, a parallel version of algorithm Al-
gorithm [T]is correct:

Conjecture 1 Algorithm  ParArbitrarilyOrdered2D
terminates, and the distributed mesh has the same prop-
erties as those guaranteed by SeqArbitrarilyOrdered2D.

Unlike in our previous work, this conjecture does not
require a potentially expensive preprocessing step, due
to the definition of the circumball intersection set and
the proof of Lemma [T}

5 Conclusions and Future Work

Our primary contribution in this paper is the introduc-
tion of the circumball intersection set, which permits
arbitrarily ordered vertex insertions, and, consequently,
yields a naturally parallelizable sequential guaranteed-
quality 2D meshing algorithm (Algorithm . We be-
lieve that the circumball intersection set will allow us
to more easily parallelize a wide range of other 3D
Delaunay-based meshing algorithms, in particular those
that prevent slivers and those that can handle sharp
boundary angles.
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