Computing Rigid Components of Pseudo-triangulation Mechanisms
in Linear Time *

Jack Snoeyink!

Abstract

We investigate the problem of detecting rigid com-
ponents (maximal Laman subgraphs) in a pseudo-
triangulation mechanism and in arbitrary pointed pla-
nar frameworks. For general Laman graphs with some
missing edges, it is known that rigid components can be
computed in O(n?) time. Here we make substantial use
of the special geometry of pointed pseudo-triangulation
mechanisms to achieve linear time.

The main application is a more robust implementa-
tion and a substantial reduction in numerical computa-
tions for the solution to the Carpenter’s Rule problem
given by the second author.

1 Introduction

We present an efficient linear time algorithm for com-
puting rigid components in pointed planar graphs, in
particular in pointed pseudo-triangulation mechanisms.

Detecting rigid components in frameworks has
emerged as an important subproblem in applications
ranging from the study of flexibility in glass networks [3]
and protein chains [7, 11], to collision-free motion plan-
ning of planar robot arms [12]. Since some of these
applications deal with special classes of graphs, it is
natural to investigate the complexity of the problem
in these classes. Most notably, we are interested in
the complexity of detecting rigid components in planar
graphs (which remains an open problem) and in pseudo-
triangulation mechanisms (solved in this paper). This
latter case was posed as an open question [13], since its
efficient solution reduces the amount of algebraic com-
putation in the robot arm motion planning algorithm
of [12].

A planar graph embedded with straight edges is
pointed if each vertex is incident to some angle strictly

*Research started at the Workshop on Geometric Aspects of
Molecular Modeling, organized by the second author at the Bel-
lairs Research Institute of McGill University in Barbados in Jan.
2003 and partially supported by NSF grant CCR-0203224.

fDepartment of Computer Science, UNC Chapel Hill, CB
3175 Sitterson Hall, Chapel Hill, NC, USA, 27599-3175.
snoeyink@cs.unc.edu. Partially supported by NSF grant
0086013.

fDepartment of Computer Science, Smith College, Northamp-
ton, MA 01063, USA, streinu@cs.smith.edu. Partially sup-
ported by NSF grant CCF-0430990.

Tleana Streinut

Figure 1: A pseudo-triangulation mechanism formed by
deleting the dashed convex hull edge. The mechanism
has 6 rigid components bounded by convex cycles: four
shaded polygons and two single edges.

greater than m — we call this the large angle incident
to the vertex. A pseudo-triangle is a simple polygon in
the plane that has exactly three convex internal angles
(i.e. that measure less than 7). A pseudo-triangulation
of a set of points P covers the convex hull of P with
pseudo-triangles having vertices from P and disjoint in-
teriors. We will assume that P is in general position,
with no three points collinear, so that angles of 0 or 7
never arise.

Pseudo-triangulations are rigid when viewed as
frameworks with fixed length bars for edges and rotat-
able joints for vertices. The only continuous motions
that preserve the lengths of all edges of the graphs are
induced by the Euclidean motions of the vertex set P
as a whole. Pointed pseudo-triangulations are mini-
mally rigid—the deletion of any edge produces a flexi-
ble framework with one degree of freedom. A pointed
pseudo-triangulation missing several edges will be called
a pointed mechanism. Particularly relevant are those ob-
tained by the deletion of exactly one convex hull edge,
as in Fig. 1: these will be called pseudo-triangulation
mechanisms. They have a one-degree-of-freedom ex-
pansive motion [12] which increases the length of the
removed convex hull edge, preserves the lengths of all
remaining edges, and never decreases the distance be-
tween any pair of vertices.

The rigid components of a flexible framework are the
maximal sets of vertices for which inter-point distances
are invariant for all local motions of the framework. De-



ciding rigidity or detecting rigid components for generic
frameworks reduces to a purely combinatorial structure:
Laman graphs. A generically minimally rigid graph or
Laman graph on n vertices has exactly 2n — 3 edges,
and subsets of n’ < n vertices span at most 2n’ — 3
edges. Laman graphs are maximal independent sets of
edges in the generic dimension 2 rigidity matroid [2],
which guarantees that maximal sets on the same num-
ber of vertices have the same size and allows greedy
algorithms to compute rigid components. For instance,
the Pebble Game algorithm [6] runs in quadratic time in
the worst case [1, 9], although better performance has
been observed in practical applications [5].

We can apply the theory of generic rigidity to pointed
pseudo-triangulations because the underlying graph of
a pointed pseudo-triangulation is a Laman graph with a
generic embedding [12]. However, the additional infor-
mation of planarity and pointedness gives hope for even
better running times.

Our main result is a linear-time algorithm to compute
the rigid components of a pointed pseudo-triangulation
mechanism. We then extend the algorithm to arbitrary
pointed planar graphs.

2 Convex regions and rigid components

We define convex regions in pointed graphs. Then
we show that the rigid components of pointed pseudo-
triangulation mechanisms are the convex regions from
which no edges have been removed. This sets up the
algorithm to find rigid components — simply find the
maximal convex regions.

A cycle in a graph is an alternating sequence of edges
and vertices; a simple cycle does not repeat a vertex.
A simple cycle in a pointed planar graph is convez if it
can be oriented so that each cycle vertex has its large
angle to the right. A convex cycle bounds a convex
region, which is the region that doesn’t contain the point
at infinity. In a pointed graph, when convex regions
intersect in more than one point, then their union is also
convex; this will help us find maximal convex regions.

Lemma 1 If two convex regions in a pointed planar
graph intersect in more than one point, then their union
1S a4 CcOnvex Tegion.

Proof. Two convex regions that satisfy the lemma’s
hypotheses are either nested, and the lemma is trivially
true, or have boundary cycles that intersect in two or
more points. These points must be vertices of the planar
graph, which have large angles to their right for both
cycles, and therefore for their union. Thus, the cycle
bounding the infinite face of the union of boundary cy-
cles is convex. O

Pointed pseudo-triangulations can be constructed
from any pointed graph by adding straight-line edges

that preserve pointedness and planarity. We can ex-
tend previous observations on the edges in pseudo-
triangulations to count edges [12]:

Lemma 2 Any subgraph of a pointed pseudo-
triangulation with v wvertices has at most 2v — 3
edges, with equality attained by and only by convex
regIons.

Laman’s theorem [10, 2] says that these counts ex-
actly characterize the generic minimally rigid graphs in
the plane, giving as corollary:

Corollary 3 An induced subgraph of a pointed pseudo-
triangulation is rigid if and only if it is a convex region.

3 Spiral walk to find maximal convex regions in
pseudo-triangulation mechanisms

The observations of the previous section suggest a sim-
ple approach for finding the rigid components in a
pointed graph: detect maximal convex subgraphs that
do not include any deleted edges. For pointed pseudo-
triangulation mechanisms, where a single edge is edge
deleted from the convex hull, this is easy to do with a
spiral walk. We focus on this important special case in
this brief paper, and just sketch the extension.

We give a simple algorithm that identifies the max-
imal convex regions in time proportional to the num-
ber of edges on their boundaries. We use a standard
winged-edge or quad-edge [3] data structure for stor-
ing connected planar subdivisions, which can access the
edges around a vertex in cw or ccw order, and can access
a vertex from any incident edge.

Recall that in a pointed graph, every vertex is incident
to an angle larger than w. We call the edges bounding
the large angle the cw and ccw extreme edges of the
vertex, clockwise and counter-clockwise from the large
angle. Any other edges are called internal. We augment
the data structure with pointers from each vertex to its
cw and ccw extreme edges.

We start the spiral walk on an edge that is known
to bound a convex region. In the beginning, this can
be any edge on the infinite face. When we reach a ver-
tex, we continue walking on the ccw extreme edge. If
this was the edge on which we reached the vertex, then
we have detected a single-edged maximal convex region.
Otherwise, we have made a left turn that keeps the large
angle to the right, and when we return to some vertex v,
we close a maximal convex region. In either case, we re-
move the detected convex region from the graph, then
continue from v if any edge remains incident on v from
the vertex where we left off. When this algorithm ter-
minates, each edge has been assigned to some convex
region.

We give more detail in Alg. 1, using Guibas and
Stolfi’s quad edge structure [3] to store connected com-



Figure 2: Spiral walk to find rigid components. First the
edge is detected (double arrow), then the shaded convex
pentagon, then quadrilateral, then triangle. Since we
started at the lowest vertex, instead of the deleted edge,
the remaining two components will be found by a second
walk.

ponents of the embedded graph. We can use it to ac-
cess, from a directed edge e, the reverse edge e.Sym,
the edges in ccw order around the faces to the right,
e.Rnext and e.Rprev, and the origin and destination
vertices, e.Org and e.Dest. For details on the con-
struction operator Splice(a,b), see [3]. We add a
e.Mark field to mark edges as unmarked, visited, or
deleted. These are initially unmarked. With each ver-
tex v we store the ccw extreme edge v.ccwExtr (or null
if there is no incident edge). We use the abbreviation
e.ccwDest = e.Dest.ccwFExtr.

The algorithm maintains three invariants. First, the
graph remains pointed at all times. Second, the marked
edges constitute a spiral walk that starts on an infi-
nite face and keeps the large angles to the right. Thus,
when an edge is revisited, we have a convex region—we
will show in a moment that detected convex regions are
maximal. Third, every connected component that has
not being considered has at least one edge from its outer
face in the bag.

The second invariant makes it clear that the identi-
fied regions are convex, and the third that every edge
is assigned to some convex region. What remains to
show is that the identified regions are maximal, espe-
cially since we take the graph apart as we traverse it.
We can do this by observing the order in which regions
are identified.

Lemma 4 The spiral walk identifies mazimal convex
regions in a pseudo-triangulation mechanism.

Proof. Suppose, for the sake of deriving a contradic-
tion, that cycle C is the first convex cycle identified by
the spiral walk that is not maximal-that there is some
convex region R that contains at least an edge of C.
By Lemma 1 we know that if C' intersects some convex
region R in more than one point, then their union is con-
vex. We can consider that the walk that found C' began
at infinity, therefore outside of R. For this walk to go

while Je € B
if e is already deleted, continue;
otherwise, repeat
repeat
mark e visited;
set e = e.ccwDest;
until e is marked.

/* Find a cycle */

set e’ =e
repeat
Mark e’ deleted;
set s = e'.Sym;
if s # €’.ccwDest /* need to cut */
Splice(s, e'.ccwDest.Rprev);
Set ¢’.Dest.ccwBxtr = s;
Add s to B; /x Save edge on outer face */
else /* nmo edge from €'.Dest */
set €. Dest.ccwEztr = null;
endif
set e’ = €'.ccwDest;
until e = €.

/* Cut cycle from graph x/

/* Report cycle from e */

set e = e.Org.ccwExtr;
until e = null
endwhile

Algorithm 1: Finding the maximal convex regions of
a pointed pseudo-triangulation mechanism. The con-
nected components are stored in a quadedge data struc-
ture. A bag of edges B, one per component, is main-
tained. Initially, there is only one component and the
bag contains an edge from its outer face.

inside of R at a vertex v, the ccw extreme edge on R
at v must have been removed earlier, which can happen
only if R was removed earlier, and since R was maximal
by choice of C, this would take away any edges of C
in R. Thus C could not be found. This contradiction
establishes the lemma. O

Theorem 5 The rigid components of a pseudo-
triangulation mechanism can be found in linear time.

Proof. By the preceding Lemmas and Corollary, the al-
gorithm correctly finds maximal convex regions, which
are the rigid components. To analyze the running time,
note that each edge is traversed at most twice. (In fact,
edges inside convex regions are not traversed at all.)
Thus, it runs in time proportional to the number of
edges in the maximal convex cycles, which is certainly
O(n), since a pseudo-triangulation mechanism has ex-
actly 2n — 4 edges [12]. O

This algorithm can be extended to find rigid com-
ponents for a mechanism formed by deleting an edge
e from inside a pseudo-triangulation, as in Figure 3.



We must take care that our convex cycles do not en-
close the deleted edge e. We modify the algorithm as
follows: each endpoint that has deleted edge e as in-
ternal is split, making two pointed vertices. The edges
that were neighbors of e become extreme edges. This
avoids cycles that enclose e at the endpoints; we must
still watch out for walks that circle the convex hull and
contain e inside.

Figure 3: If we walked from inside, we might find the
convex hull containing the deleted edge. Walking from
pairs detects the single edge component instead.

Since some convex cycle must visit the endpoints of e,
we can put the extreme edges for these endpoints into
the initial bag in pairs. We can then walk in lock-step
from both edges of a pair, one going cw and one ccw,
stopping whichever walk reaches the initial direction of
the other. We detect convex regions by revisited ver-
tices, as before; when we remove a convex region, we
put extreme edge pairs in the bag for any vertex that
gets a new extreme edge. We omit precise details due
to space constraints.

4 Conclusions

The main application of this result is a more robust
implementation and a substantial reduction in numer-
ical computation for the solution to the Carpenter’s
Rule problem based on pseudo-triangulation mecha-
nisms [12, 13]. Since the vertices inside a rigid com-
ponent do not move relative to each other, the extreme
edge pairs for such vertices need not be tested for align-
ment. It remains open whether this simplification leads
to an asymptotic reduction in the number of alignment
events of the algorithm.

The simple algorithm we described makes use of the
strong constraints of pointedness and planarity to detect
rigid components in better than the quadratic time of
the general case. Natural open questions remain (see
also [13]):

Open Problem 1 Is there a subquadratic time algo-
rithm for rigid component detection for a planar (non-
crossing) mechanism, not necessarily embedded as a
pseudo-triangulation mechanism?

Open Problem 2 What is the complexity of deciding
whether a planar (non-crossing) graph with 2n—3 edges
1s Laman? Can this be done in subquadratic time?

References

[1] A. Berg and T. Jorddn. Algorithms for graph rigidity
and scene analysis. In G. D. Battista and U. Zwick,
eds, Proc. 11th European Symp. on Algorithms (ESA),
vol. 2832 of Lect. Notes in Comp. Science, pp. 78-89.
Springer, 2003.

[2] J. Graver, B. Servatius, and H. Servatius. Combinato-
rial Rigidity. Graduate Studies in Mathematics vol. 2.
American Mathematical Society, 1993.

[3] L. J. Guibas and J. Stolfi. Primitives for the manipu-
lation of general subdivisions and the computation of
Voronoi diagrams. ACM Trans. Graph., 4(2):74-123,
April 1985.

[4] R. Haas, D. Orden, G. Rote, F. Santos, B. Ser-
vatius, H. Servatius, D. Souvaine, I. Streinu, and
W. Whiteley. Planar minimally rigid graphs and
pseudo-triangulations. Comp. Geometry: Theory and
Applic., pages 31-61, May 2005.

[5] D. Jacobs. personal communication, 2003.

[6] D. J. Jacobs and B. Hendrickson. An algorithm for two
dimensional rigidity percolation: The pebble game. J.
Comput. Phys., 137:346-365, 1997.

[7] D. J. Jacobs, L. A. Kuhn, and M. F. Thorpe. Flexible
and rigid regions in proteins. In Thorpe and Duxbury,
editors, Rigidity Theory and Applications, pages 357—
384. Kluwer Academic/Plenum Press, 1999.

[8] D. J. Jacobs and M. F. Thorpe. Generic rigidity per-
colation: the pebble game. Phys. Rev. Lett., 75:4061—
4054, 1995.

[9] A. Lee, I. Streinu, and L. Theran. Finding and main-
taining rigid components. These proceedings, Canadian
Conf. Comp. Geom.2005.

[10] G. Laman. On graphs and rigidity of plane skeletal
structures. J. Engrg. Math., 4:331-340, 1970.

[11] A. J. Rader, B. M. Hespenheide, L. A. Kuhn, and
M. F. Thorpe. Protein unfolding: Rigidity lost. PNAS,
22(6):3540-3545, March 19 2002.

[12] 1. Streinu. A combinatorial approach to planar non-
colliding robot arm motion planning. In ACM/IEEFE
Symp. on Found. of Comp. Science (FOCS), pages 443~
453, 2000.

[13] I. Streinu. Combinatorial roadmaps in configuration
spaces of simple planar polygons. In S. Basu and
L. Gonzalez-Vega, eds, Proc. DIMACS Workshop Al-
gorithmic and Quantitative Aspects of Real Algebraic
Geometry in Math. and Comp. Science, pp. 181-206.
DIMACS, 2003.



	Introduction
	Convex regions and rigid components
	Spiral walk to find maximal convex regions in pseudo-triangulation mechanisms
	Conclusions

