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Abstract

F. Labelle and J. Shewchuk [3] have proposed a discrete
definition of anisotropic Voronoi diagrams. These dia-
grams are parametrized by a metric field. Under mild
hypotheses on the metric field, such Voronoi diagrams
can be refined so that their dual is a triangulation, with
elements shaped according to the specified anisotropic
metric field.

We propose an alternative view of the construction of
these diagrams and a variant of Labelle and Shewchuk’s
algorithm. This variant computes the Voronoi vertices
using a higher dimensional power diagram and refines
the diagram as long as dual triangles overlap. We
see this variant as a first step toward a 3-dimensional
anisotropic meshing algorithm.

1 Introduction

Anisotropic meshes are triangulations of a given domain
in the plane or in higher dimension, with elements elon-
gated along prescribed directions. Anisotropic trian-
gulations have been shown [5] to be particularly well
suited for interpolation of functions or numerical mod-
eling. They allow to minimize the number of triangles
in the mesh while retaining a good accuracy in compu-
tations.

Various heuristic solutions for generating anisotropic
meshes have been proposed. Li et al. [4] and Shimada
et al. [6] use packing methods. Bossen and Heck-
bert [2] use a pliant method consisting in centroidal
smoothing, retriangulating and inserting or removing
sites. Borouchaki et al. [1] adapt the classical Delau-
nay refinement algorithm to the case of an anisotropic
metric.

Recently, Labelle and Shewchuk [3] have settled the
foundations for a rigorous approach based on the so-
called anisotropic Voronoi diagrams. We propose an
alternative view of the construction of these diagrams
and a variant of the algorithm of Labelle and Shewchuk.
This variant computes the Voronoi vertices using a
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higher dimensional power diagram and refines the di-
agram as long as dual triangles overlap.

In this paper, most of the proofs are omitted. The
full paper is available online 1.

2 Anisotropic Meshing

2.1 Anisotropic Voronoi Diagrams

We expose in this section the definitions proposed by
Labelle and Shewchuk [3]. Figures illustrating most of
these definitions can be found in [3]. An anisotropic
Voronoi diagram is defined over a domain Ω ⊂ R

d, and
each point p ∈ Ω has an associated metric. More specif-
ically, a point p is given a symmetric positive definite
quadratic form represented by a d × d matrix Mp. The
distance between two points x and y as viewed by p is
defined as

dp(x, y) =

√

(x − y)
t
Mp(x − y) ,

and the distance between p and q is defined as d(p, q) =
min(dp(p, q), dq(p, q)). In a similar way, the angle ∠xqy
as viewed by p is defined as

∠pxqy = arccos
(x − q)tMp(y − q)

dp(q, x)dp(q, y)
.

In order to compare the metric at points p and q,
a transfer application is needed. Given the quadratic
form Mp of a point p, we denote by Fp any matrix such
that det(Fp) > 0 and F t

pFp = Mp. Then, the transfer
application from p to q is

Fp,q = FqF
−1
p .

Application Fp,q is in fact an isometry between the met-
ric spaces (Rd, Mp) and (Rd, Mq). The distortion be-
tween p and q is then defined as γ(p, q) = γ(q, p) =
max{‖Fp,q‖2

, ‖Fq,p‖2
}. For any two points x, y, we have

1/γ(p, q) dq(x, y) ≤ dp(x, y) ≤ γ(p, q) dq(x, y).
Let S be a set of points, called sites in the sequel.

The Voronoi cell of a site p ∈ S is

Vor(p) = {x ∈ R
d, dp(p, x) ≤ dq(q, x), ∀q ∈ S} .

Any subset of sites R ⊂ S defines a Voronoi face
Vor(R) = ∩p∈R Vor(p) which is the set of points equally

1ftp://ftp-sop.inria.fr/geometrica/cwormser/aniso.ps
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close to the sites in R and not closer to any other. The
set R is called the label of Vor(R). The anisotropic

Voronoi diagram of S is the subdivision formed by the
non-empty faces {Vor(R), R ⊂ S, R 6= ∅, Vor(R) 6= ∅}.

The restriction of the anisotropic Voronoi diagram to
Ω is the diagram formed by the non-empty intersections
Vor(R) ∩ Ω.

It should be noted that each site is in the topological
interior of its cell. The cells are not always connected,
and the boundary between two adjacent cells may be
composed of several patches. These patches are all con-
tained in the same quadric, which is the bisector of the
two sites. Moreover, there can be more than one Voronoi
vertex with a given label.

2.2 Dual Complex

The dual complex of an anisotropic Voronoi diagram is
the simplicial complex whose set of vertices is the set
S, with a simplex associated to each subset R ⊂ S such
that Vor(R) 6= ∅. We associate to each of those simplices
a geometric simplex, its canonical linear embedding in
R

d. The set of those geometric simplices, with their
incidence relations, is called the geometric dual. The
geometric dual is generally not an embedded complex.

In two dimensions, the geometric dual includes, for
each Voronoi vertex v, a dual triangle whose vertices
are the three sites that compose the label of v. There
is no reason why these triangles should form a triangu-
lation. The two issues to be considered are the combi-
natorial planarity of the graph, which depends on the
connectivity of the cells, and the ability to stretch its
edges without crossing, which depends on the curvature
of the bisectors.

The goal of the meshing algorithm is to refine the
anisotropic Voronoi diagram by inserting new sites, so
that its geometric dual becomes a triangulation, with
well-shaped triangles. By well-shaped triangles, we
mean triangles with no small angles, as seen by any
point of the triangle. Furthermore, a set of constrained

segments, i.e. segments required to appear as a union
of edges in the final mesh, can be given as part of the
input data. These constrained segments may be split by
the insertion of new sites. In such a case, the resulting
parts are called constrained subsegments. In particu-
lar, the edges of the boundary ∂Ω of the domain Ω are
assumed to be constrained segments.

2.3 Original Approach by Labelle and Shewchuk

Labelle and Shewchuk represent the Voronoi diagram as
the lower envelop of a set of paraboloids over the domain
Ω. Upon the insertion of a new site, this lower envelop
is computed in a lazy way, which amounts to computing
only the connected component of the cell that contains
the new site.

The wedge between two sites p and q is the locus of
points x such that the angle ∠pxpq and the angle ∠qxqp
are less than π/2. A Voronoi edge e is called wedged if
e is included in the wedge of the pair of sites defining it.
The refinement process in dimension 2 aims at enforcing
this property for all edges of the diagram. Labelle and
Shewchuk prove that once all edges are wedged, every
cell is connected and the dual of the diagram is indeed
a triangulation. This fact validates their lazy computa-
tion of the diagram.

Labelle and Shewchuk’s algorithm consists in incre-
mentally inserting points on non-wedged Voronoi edges
and at the center of triangles that do not have the same
orientation as the three Voronoi cells around their dual
Voronoi vertices (this reverse orientation results from
a non-wedged edge incident to these vertices), or are
badly shaped, or are too large.

3 Our Approach

3.1 Power Diagram and Anisotropic Voronoi Dia-

gram

We now present a way to compute the anisotropic
Voronoi diagram in any dimension.

A power diagram is defined for a set of spheres. Given
a sphere σ centered at y and of radius r, the power

of a point x with respect to σ is defined as πσ(x) =

‖x − y‖2 − r2.
The cells of the power diagram of a set of spheres Σ

are defined in the following way: the cell of a sphere
σ of Σ is Pow(σ) = {x ∈ R

d, πσ(x) ≤ πτ (x), ∀τ ∈ Σ}.
The power diagram is the subdivision induced by the
cells of spheres. Its restriction to a manifold X is the
subdivision of X induced by the cells intersected by X .

Let D = d(d + 3)/2. Associate to each point x =
(x1, . . . , xd) ∈ R

d the point x̃ = (xrxs, 1 ≤ r ≤ s ≤ d) ∈
R

d(d+1)
2 and the point x̂ = (x, x̃) ∈ R

D.
In the following, we name P the d-manifold of R

D
{

x̂ ∈ R
D, x ∈ R

d
}

. As before, S = {p1, . . . , pn} de-
notes a finite set of sites in R

d. To each point pi

of S, we attach a symmetric positive definite matrix
Mi = (M r,s)

0≤r,s≤d and we define the point qi =

(qr,s, 1 ≤ r ≤ s ≤ d) ∈ R
d(d+1)

2 by qr,r = − 1

2
M r,r,

for 1 ≤ r ≤ d and qr,s = −M r,s, for 1 ≤ r < s ≤ d.
Then we note p̂i the point (Mipi, qi) and σ(pi) the

sphere with center p̂i and radius

√

‖p̂i‖2 − pt
iMipi.

Lemma 1 Let Π be the projection (x, x̃) ∈ R
D 7→ x ∈

R
d. The anisotropic Voronoi diagram of S is the image

by Π of the restriction of the power diagram of Σ =
{σ(p), p ∈ S} to the manifold P.

The previous lemma gives a construction of the
anisotropic Voronoi diagram, where the quadric bisec-
tors are replaced by affine ones in higher dimension. As

2



is well-known, computing a power diagram in R
D re-

duces to computing a lower convex hull in R
D+1. Hence,

computing a 2-dimensional anisotropic Voronoi diagram
reduces to computing a 6-dimensional convex hull and
intersecting the corresponding power diagram with a
2-dimensional manifold. Our meshing algorithm com-
putes only the vertices of the anisotropic Voronoi dia-
gram. This will be sufficient for our purpose. Comput-
ing these vertices is achieved by computing the intersec-
tion of 3-faces of a 5-dimensional power diagram with a
2-manifold.

3.2 Description of our Algorithm

From now on, let Ω be a simply connected polygonal
domain of the plane, whose boundary is denoted by ∂Ω.
A field of positive definite matrices over Ω is given. We
denote by C the set of constrained segments and by S
a finite set of sites in Ω. We assume that the edges
of ∂Ω belong to C and that the vertices of ∂Ω belong
to S. Refining the Voronoi diagram consists in adding
sites to the set S. We assume that the quadratic form
associated to any point of Ω can be obtained.

3.2.1 Local Embedding

We now define some properties of the dual triangles of
the Voronoi vertices that the algorithm will aim to en-
force. These properties are tailored so that, once they
are verified, the dual triangles define a triangulation of
the domain they cover.

We consider a set of non-flat triangles T such that

1. the set of vertices of the triangles in T is exactly S;

2. each edge of ∂Ω is the edge of exactly one triangle
in T ;

3. if e is the edge of some triangle in T and is not an
edge of ∂Ω, e belongs to exactly two triangles in T ,
which do not overlap.

We prove, under those assumptions, that the triangles
of T are inside Ω and that T is a triangulation of Ω. To
prove the last fact, we glue the triangles of T along
their common edges and vertices to build a surface: we
denote by T = {(x, t) ∈ Ω × T | x ∈ t} the set of points
associated to their respective triangles, and we define on
T the equivalence relation ∼ by setting (x, t) ∼ (x′, t′)
if x = x′ and x ∈ ∂t and x′ ∈ ∂t′. The final glued space
is denoted by G = T / ∼.

Let h : (x, t) ∈ G 7→ x be the first projection, map-
ping G to Ω. The correctness of the triangulation is
equivalent to h being a homeomorphism. Let Ωp be
the punctured space obtained by removing from Ω the
vertices of the triangles of T , and let Gp be h−1(Ωp).

From assumption 3, the restriction hp of h to Gp is a
local homeomorphism. Thus hp is a cover of Ωp. As the

points near ∂Ω have only one pre-image, from assump-
tion 2, hp : Gp → Ωp has only one sheet and is in fact a
homeomorphism. Moreover, hp may be extended to G
as an homeomorphism. Thus, Ω is triangulated by T .

3.2.2 Refinement Algorithm

In this section, we present our algorithm, which mainly
apply the result of the previous section to ensure the
validity of the returned triangulation.

Let v be a Voronoi vertex of an anisotropic Voronoi di-
agram, and let tv = abc be its dual triangle. The radius

of v is r(v) = da(a, v) = db(b, v) = dc(c, v). We denote
the shortest edge of tv by δ(tv). The radius-edge ratio

of v is β(v) = r(v)/δ(tv). For a given shape bound B, a
vertex v is considered to be badly-shaped if β(v) > B.

In the following, a constrained subsegment e = (a, b)
is said to be encroached by a site p 6∈ {a, b} if Vor(p) ∩
[a, b] 6= ∅. We are given a shape bound B. At each step
of the algorithm, we maintain the set T of the trian-
gles dual to the Voronoi vertices lying in Ω (see section
3.1). The algorithm inserts points iteratively, applying
the following rules. Rule i is applied only if no rule j
with j < i applies. The conditional insertion of a site x
appearing in rules 2, 3, 4 and 5 is the following proce-
dure: if x encroaches no constrained subsegment, insert
x, but if x encroaches some constrained subsegment e,
insert a site on e instead.

1. if a constrained subsegment e ∈ C does not ap-
pear as the edge of some dual triangle because it is
encroached, insert a site on e;

2. if a constrained subsegment e ∈ C does not appear
as the edge of some dual triangle because its dual
Voronoi edge is a complete ellipse, conditionally in-
sert a site on this ellipse;

3. if a Voronoi vertex is badly shaped, conditionally
insert a site located at that vertex;

4. if a triangle is the dual of several Voronoi vertices,
conditionally insert a site located at one of them;

5. if two triangles sharing an edge overlap, condition-
ally insert a site located at the dual Voronoi vertex
of one of them.

The algorithm runs until no rule applies anymore.
We prove that if the algorithm terminates, every con-
strained subsegment appears as an edge of some dual
triangle. Moreover, we prove that, upon termination of
the algorithm, any edge of a dual triangle that is not an
edge of ∂Ω belongs to exactly two dual triangles. Sec-
tion 3.2.1 then show that T is a triangulation of Ω. It
remains to prove that the algorithm terminates.
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4 Termination of our Algorithm

We now provide conditions that ensure that the algo-
rithm terminates. This conditions depend on the shape
bound B and on the geometry of the set of constrained
segments C.

4.1 Distortion and overlapping

In this subsection, we prove that two dual triangles can-
not overlap if the relative distortion between adjacent
sites is small enough. In the following, abc and abd
are two adjacent triangles that are dual to Voronoi ver-
tices qc and qd. We define γ = max(γ(x, y)) where the
maximum is taken over all edges {x, y} of the two tri-
angles. We denote by δ(abc) the length of the short-
est edge of triangle abc and by δ(a, b, c, d) the length
max(δ(abc), δ(abd)). Let r = (1 + 4γ)Bδ(a, b, c, d). We
consider the zone Z = B(a, r)∩B(b, r)∩B(c, r)∩B(d, r),
where the ball B(x, r) is the set of points y such that
dx(x, y) ≤ r. The four sites a, b, c and d are in Z, as
well as the two centers qc and qd. We denote by VZ the
Voronoi diagram of the set {a, b, c, d} restricted to Z.

Lemma 2 For B > 1 and (γ2−1)(1+γ)2(1+4γ)2B4 ≤
1, all the edges of VZ are wedged.

Under the conditions of lemma 2, a slight adaptation
of the proofs of Labelle and Shewchuk [3] (recalled in
section 2.3) allows to show that the dual of the restricted
Voronoi diagram VZ is a valid triangulation.

4.2 Minimal Interdistance

We now consider the algorithm at some stage dur-
ing its execution. We have a shape bound B and
a distortion coefficient G, chosen so that (G2 −
1)(1 + G)

2
(1 + 4G)

2
B4 ≤ 1. Let dmin (resp. dw

min)
be the minimal distance between adjacent sites, before
(resp. after) inserting site w. We prove that, whatever
may be the rule applied to insert w,

d
w

min ≥ min

„

dmin

G2
√

G4−1
,

Bdmin

G2
√

G2+1
,

bdrmin(G)

(G5+G3)
√

G2+1
,

lfsmin
G

«

.

Here bdrmin(G) is the upper bound on the distance r
such that: d(p, q) < r ⇒ γ(p, q) < G and lfsmin is the
lower bound of the local feature size on Ω, as defined in
[3].

We finally obtain that if B and G verify (G2 −
1)(1 + G)

2
(1 + 4G)

2
B4 ≤ 1, G2

√
G4 − 1 ≤ 1 and

G2
√

G2 + 1 ≤ B and if bdrmin(G) > 0 (this condi-
tion is always true if the metric field is regular enough),
the algorithm has a positive minimal inter-distance.
Moreover, if (G2 − 1)B2 < 1, the shape condition
parametrized by B may be translated into a condition

in terms of a lower bound on the angles of the trian-
gles, as measured by any point inside the triangle (see
Corollary 10 in [3]). We can find B and G satisfying
all those conditions. A classical volume argument then
proves that the algorithm terminates.

5 Conclusion

The approach we have presented is built upon the work
of Labelle and Shewchuk. Instead of using a lower en-
velop of paraboloids, we rely on a power diagram in
higher dimension. Moreover, we present the algorithm
by focusing on the overlapping condition, thus mini-
mizing the dependence over the Voronoi diagram itself,
apart from the computation of the Voronoi vertices. As
an aside, we also rely only on the Voronoi vertices that
are inside the domain Ω, while Labelle and Shewchuk
compute the whole diagram.

This algorithm has been implemented using the Com-
putational Geometry Algorithms Library [7].

A similar algorithm can be considered in three di-
mensions. However, we currently cannot prove that
this meshing algorithm terminates in three dimensions
because sliver tetrahedra may overlap their neighbors,
without inducing a large insertion distance for the new
refining point. This may happen even in the case of low
distortion of the metric field.
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