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Abstract

We study the problem of finding a shortest tour visiting
a given sequence of convex bodies in Rd. To our knowl-
edge, this is the first attempt to attack the problem
in its full generality: we investigate high-dimensional
cases (d ≥ 2); we consider convex bodies bounded by
(hyper)planes and/or (hyper)spheres; we do not restrict
the start and the goal positions of the tour to be single
points, we measure the length of the tour according to
either Euclidean or L1 metric. Formulating the problem
as a second order cone program (SOCP) makes it pos-
sible to incorporate distance constraints, which cannot
be handled by a purely geometric algorithm.

We implemented the SOCP in MATLAB and ob-
tained its solution with the SeDuMi package. We ran
computational experiments, which suggest that the pro-
posed solution is practical.

Finally, we present NP-hardness results, showing that
the assumptions we make in the statement of our prob-
lems are crucial for the problems to be tractable.

1 Introduction

We consider the problem of finding a shortest tour of
a sequence of bodies in Rd. The difference between the
problems studied here and classical TSP-like problems
is that we assume that the sequence in which the bodies
are to be visited is given in advance. An example of such
touring problem is the problem of finding a shortest tour
through a set of line segments [5, 9, 11, 12]. Due to the
bit complexity of the solution, one can only hope to
solve the touring problem approximately in polynomial
time. A singly-exponential time exact algorithm for the
problem of touring line segments in R3 is given in [11].
In [2] the problem of finding ε-approximate shortest tour
of lines in R3 is solved in time doubly logarithmic in 1/ε.
The general problem for convex polygons in R2 is solved
in [4].

SOCP is known to be applicable to a number of com-
putational geometry problems, such as finding extremal
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volume ellipsoids, centering, separation and classifica-
tion, placement and facility location, projection and dis-
tance problems, intersection and containment of poly-
hedra, floor planning [1], architectural design [10]; see
also [15]. SOCP also provides a natural framework to
attack geometric problems in which the goal is to op-
timize the length of a network (embedding of a planar
graph), possibly, under linear and quadratic constraints.
A classical example is the Weber (Facility Location)
problem [3, 7, 14]: the total length of a star is mini-
mized, when the locations of degree-1 nodes of the star
are given. In this work we use SOCP to minimize the
total length of a path, when the nodes of the path are
constrained to stay within convex regions. SOCP for-
mulation also allows one to incorporate certain length
and distance constraints. A framework similar to ours
is outlined in [1, page 433], where it is applied to place-
ment and location problems.

2 SOCP Formulation

We assume that each body Bi (i = 1 . . . K) in the se-
quence is given as the intersection of a set of Ji bound-
ing (hyper)halfspaces and (hyper)spheres: Bi = {x ∈
Rd |x ∈ H−ij , j = 1 . . . Ji}. Each of the bounding sur-
faces gives rise to a linear or conic constraint xi ∈ H−ij ,
where xi is the i-th vertex of the path. Then the touring
problem may be formulated as the following SOCP:

minimize t1 + t2 + ... + tK−1

subject to: ti ≥ ||xi+1 − xi|| i = 1 . . . K−1
xi ∈ H−ij i = 1 . . . K j = 1 . . . Ji

If the bodies in the sequence have in total n constraints,
then the SOCP allows us to find an ε-approximate tour
in O

(
d3n1.5K2 log 1

ε

)
([6]).

2.1 Additional Constraints

In some applications it is natural to ask that the length
of each link of the tour does not exceed a certain
bound Li . Sometimes, also a set C = {c1, . . . , cM}
of M control points is given, with the requirement
that (some of) the bends of the tour occur close to
(some of) the control points: ||xi − cm|| ≤ dim, where
dim (i = 2 . . . K−1, m = 1 . . . M) are some constants.

Imposing any of the above constraints makes it un-
likely that the problem can be efficiently solved by
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Figure 1: Tours, optimal in different metrics.

purely geometric techniques, like the ones in [9] and
subsequent papers on the WRP (see [8]). At the same
time, these additional constraints are conic and thus
naturally can be handled by our program.

2.2 L1 metric

Our SOCP can also be applied to the touring problem
when the length of the tour is measured according to
the L1 metric. It requires only a slight change in the
SOCP: for each link of the tour one variable per dimen-
sion is introduced. In R2, e.g., the new SOCP will be:

minimize tx1 + ty1 + ... + tx
K−1

+ ty
K−1

subject to: (xi, yi) ∈ H−ij j = 1 . . . Ji

txi ≥ ||xi+1 − xi|| i = 1 . . .K−1
tyi ≥ ||yi+1 − yi|| i = 1 . . .K−1

Figure 1 shows the tours of a sequence of line segments,
optimal under L1 and L2 metrics.

2.3 Weighted Links

It is straightforward to modify our solution so that it
handles the weighted version, in which each link is as-
signed a weight. If w1, . . . , wK−1 are the weights of the
links, the objective function changes to min w1t1 + ... +
wK−1tK−1 ; the rest of the SOCP remains the same.

Figure 2 shows the optimal weighted tours of a se-
quence of parallel line segments. Without the constraint
on the length of the links, the path obeys Snell’s Law
of Refraction; the behavior of the constrained path is
different.

3 Computational Experiments

We implemented the described program in MATLAB.
The solution to the SOCP was obtained with the
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Figure 2: Illustration of two optimal paths through
weighted strips, showing the constrained (solid) and un-
constrained (dashed) optimal routes. Here, the length
constraint is L = 1.5. The bold number in each strip is
its weight.

SeDuMi package by Jos Sturm [13]. We report here
the run times for the simplest case, when the bodies are
parallel straight line segments of equal length – edges in
a weighted subdivision of a box (see Fig. 2).

Theoretically, the running time of the algorithm is
O(K3.5 log 1/ε) to achieve accuracy ε. We did not
change the default SeDuMi setting ε = 10−9 in our ex-
periments. We were able to solve instances of the prob-
lem with K up to 5000. The SOCP algorithm performed
about 15–25 iterations in every instance of the prob-
lem. This coincides with the observation, made by Lobo
et al. in [6] about primal-dual interior point method
for SOCP: the typical number of iterations ranges be-
tween 5 and 50, almost independent of the problem size.

The average (over about 100 runs) actual running
time of the algorithm for different problem sizes is pre-
sented in Figure 3.

Figures 4, 5, 6 and 7 show solutions of the general
touring problems in 2 and 3 dimensions.

4 Hardness Results

We complement our solution with NP-hardness results,
showing that the assumptions we make in the statement
of the problem are crucial to the efficient solvability.

First of all, if the order in which the bodies are to be
visited is not given, then our touring problem becomes
TSP with neighborhoods (see [8, Ch. 7.4]) and thus is
NP-hard.

If the bodies in the sequence are not convex, then our
problem is NP-hard by the reduction presented in [4].

Finally, if the length of each link of the tour is
bounded from below, then even the simplest version of
our problem is weakly NP-hard. Indeed, consider the
problem of finding a shortest path visiting a sequence
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Figure 3: Running times, Windows Machines. Top:
1.9MHz, 512M RAM Compaq laptop; bottom: 1.7MHz,
256M RAM Dell desktop. Left: unconstrained; right:
constrained. Dots – run time, sec; crosses – run time
per iteration, .1 sec.

Figure 4: A path in 2D.

Figure 5: A path in 3D.
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Figure 6: Touring lines in 3D; path endpoints are given.
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Figure 7: Touring lines in 3D; path endpoints are given.
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Figure 8: The hardness reduction. The width of strip i
is bi =

√
L− a2

i . If the ith link has positive slope, then
ai is chosen to be in the subset A′.

of parallel line segments of equal length, with a given
start point s and goal point t.

We use a reduction from Partition: Given a set
A = {a1, . . . , aK} of K integers summing to S, is there
a subset A′ ⊂ A of elements summing to S/2? Given an
instance of Partition, we construct an instance of the
touring problem such that the Partition problem has
answer “Yes” if and only if the optimal path has length
at most (K + 1)L, where L the lower bound on the
length of the links (common for all links). See Figure 8.

Theorem 1 The optimal touring problem is weakly
NP-hard if a lower bound is specified for the length of
each segment of the path.

5 Discussion and Open Problems

Our results on the touring problem may be applicable
to other optimal path problems and, in particular, may
be useful in computing locally optimal paths, as a sub-
problem in solving TSP with neighborhood problems in
which the order is not given.

Since we use SOCP as a “black box”, any future im-
provement in SOCP algorithms will mean correspond-
ing improvement of our solution. In particular, there is
a readily available “warm start” initial solution to our
SOCP: a random point inside each of the bodies pro-
vides a feasible solution to the program.

The difference in the complexity of the touring prob-
lem with upper and lower bounds on the length of the
links may be explained as follows. The upper bound
on a link length induces a convex constraint, the lower
bound induces a non-convex constraint. Indeed, the set
C≤ = {(x, y) ∈ R2d | ‖x − y‖ ≤ 1} is convex since for
(a, b), (c, d) ∈ C≤, ‖a+c

2 − b+d
2 ‖ ≤ ‖a−b‖

2 + ‖c−d‖
2 ≤

1 ⇒ (a+c
2 , b+d

2 ) ∈ C≤. At the same time the set
C≥ = {(x, y) ∈ R2d | ‖x − y‖ ≥ 1} is non-convex since
already its intersection with the hyperplane x = 0 (the
exterior of the unit sphere in Rd) is not convex.

Obviously, in some instances the optimal tour is self-
intersecting. What is the hardness of finding an optimal

simple tour (or cycle)? What if each body is just a single
point in 2D?

Another open problem ([4]) is the hardness of touring
a sequence of disjoint non-convex bodies in R2.
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