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Abstract

We propose an implicit representation for the farthest
Voronoi diagram of a set P of n points in the plane
located outside a set R of m disjoint axes-parallel rec-
tangular obstacles. The distances are measured ac-
cording to the L1 shortest path (geodesic) metric. In
particular, we design a data structure of size O(N1.5)
in O(N1.5 log2 N) time that supports O(N0.5 log N)-
time farthest point queries (where N = m + n). We
avoid computing the more complicated farthest neigh-
bor Voronoi diagram, whose combinatorial complexity is
Θ(mn). This allows one to compute the diameter (and
all farthest pairs) of P in O(N1.5 log2 N) time. This
improves the previous O(mn log N) bound [1].

1 Introduction

Let R be a set of m disjoint (axes-parallel) rectangles
in the plane. We assume the rectangles in R are open,
and refer to them as obstacles. Let P be a set of n
points in free space, F = R2 − ∪R. In the following
we will assume that m and n are of comparable sizes.
In this paper the input is the pair R, P. The distance
between two points a, b ∈ F , denoted d(a, b), is the L1

geodesic (shortest obstacle-avoiding path) distance be-
tween them; i.e., d(a, b) is the (Euclidean) length of a
shortest path in F , from a to b, that is comprised of
axes-parallel line segments. For extensive background
and numerous references, see [6].
In this paper a new result on farthest neighbor queries
of P is presented. This is achieved by first construct-
ing an implicit (compact) representation of the farthest
Voronoi diagram. The problem we address is of con-
structing a data structure for farthest point queries in
P, which allows one to determine quickly the point of
P that is farthest from a query point q. Note that
the nearest neighbor query problem for L1 geodesic dis-
tance in the plane is well understood, such Voronoi dia-
gram has O(N) size, O(N log N) constructing time, and
O(log N) query time [7]. In contrast, the best results on
L1 farthest neighbor Voronoi diagrams requires O(mn)
space and O(mn log N) constructing time, to support
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O(log N) time queries [1]. In fact, the (explicit) combi-
natorial complexity of such Voronoi diagram is Ω(mn).
For our problem we avoid explicitly computing the L1

farthest neighbor Voronoi diagram. Instead, we use
a query mechanism [4] which uses O(N1.5 log N) run-
ning time to compute an O(N1.5) data structure and
supports distance queries (shortest distance between
any two corner points) in O(N0.5) query time. Us-
ing this query mechanism we present a new (compact)
representation of farthest Voronoi diagram (FVD) of
size O(N1.5) that supports O(N0.5 log N)-time farthest
point queries. The construction time of the represen-
tation is O(N1.5 log2 N). We then use this compact
Voronoi diagram to compute the diameter by finding
first all the farthest pairs. The proposed algorithm has
an O(N1.5 log2 N) running time. This improves the best
known algorithm which runs in O(mn log N) time [1].

2 Preliminaries

For points a, b ∈ F , we let path(a, b) denote any path
between a and b of length d(a, b). Assume that a lies
to the left of (resp., below) b. An x-monotone (resp.,
y-monotone) path from a to b is a path in which all
of the horizontal (resp., vertical) segments of the path
are directed rightwards (resp., upwards). A path that
is both x-monotone and y-monotone is xy-monotone.
Clearly, if there exists an xy-monotone path between
a = (ax, ay) and b = (bx, by), then this path is a shortest
path between a and b and its length is simply |ax−bx|+
|ay − by|.

Lemma 1 [2] For any two points a and b in the
free space, any shortest path between a and b is ei-
ther x-monotone or y-monotone. Moreover, if both x-
monotone and y-monotone paths exist, then there exists
an xy-monotone path between a and b.

Let a, b ∈ F , with a to the left of b, and assume that
there is no xy-monotone path between a and b. Denote
x-first(a, b) to be a particular shortest path from a to b,
obeying the following rule. In traveling from a to b we
always prefer to go to the right, if possible (i.e., if by
moving rightwards from the current location we do not
penetrate into an obstacle or lose our ability to obtain
a shortest path). We define y-first(a, b) similarly.
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Let q ∈ F and let Pleft (resp., Pright) denote the sub-
set of P consisting of the points that lie to the left (resp.
right) of q, and for which there exists an x-monotone
path ending at q. The farthest point from q on the left
(resp., right) is the point in Pleft (resp. Pright) for which
the shortest x-monotone path to q is the longest. Sim-
ilarly, we define Pbelow (resp., Pabove) and the farthest
point from q from below (above).

Lemma 2 [1] The point in P that is the farthest from
(query point) q is among the four points that are the
farthest from q on the left, right, below, and above.

Our goal is to construct a data structure for answering
farthest neighbor queries: Given a query point q, find
which of the points in P is the farthest from q. The
above lemma allows us to construct four separate data
structures, one for finding the farthest point from q on
the left, one for finding the farthest point from q on
the right, etc., and to answer a farthest point query by
performing a query in each of the four data structures
and selecting the farthest of the four candidates. We
shall describe the data structure for finding the farthest
point on the left; the other cases are analogous.

Theorem 3 [1] Let a be a point in the free space, and
let b be a point in the free space that lies in the (interior
of the) right region of a. Let c be a point in the free
space that lies to the right of b (not necessarily in the
right region of a). If there exists an x-monotone path
from b to c, then d(a, c) > d(b, c) (see Figure 1 left).

Let X− denote the subset of P consisting of the points
that do not lie in the right region of any other point
in P. X− can be computed in O(n log n) time. The
sets X+, Y−, and Y+ are defined similarly. Theorem 3
allows us, for example, to construct the substructure for
finding the farthest neighbor on the left using the subset
X− rather than P. According to Lemma 2 the farthest
point (p) from q is either on the left, on the right, from
below, or from above. Assume p is the farthest from q
on the left, then p necessarily belongs to X−.

The sets X− and X+ (alternatively, Y− and Y+) may
have some points in common. However, the intersection
between X ∗ and Y∗, where ∗ ∈ {−,+}, consists of a
single point, assuming general position (since any such
point must lie on a supporting line of slope±45 degrees).

Theorem 4 [1] Let l be a vertical line, and let p1, p2

be two points in X− to the left of l, such that p1.y >
p2.y. If q1 and q2 are two points on l such that (i) there
exists an x-monotone path from pi to qj, i, j ∈ 1, 2, (ii)
d(p1, q1) > d(p2, q1), and (iii) d(p2, q2) > d(p1, q2), then
q1.y < q2.y.

We can generalize Theorem 4 to any number of points
in X− = {p1, . . . , pk}. Let l be a vertical line to the

right of X−. Then X− divides l into ranges where
each range is labeled by a point of X− from which it
is farthest (assuming there are x-monotone paths from
each point in X− to l). The following two observations
are the direct outcomes of Theorem 4: i) any point
p ∈ X− can generate at most one single (connected)
range on l – from which it is farthest to p, and ii) the
y-order of the ranges (on l) is sorted in reverse y-order
of their generating points in X−.

Let q ∈ F be an arbitrary point, let X−(q) denote the
set of all the points in X− which are both to the left of
q and have an x-monotone path to q. Let x−u (x−b ) be
the highest (lowest) point in X−.
Definition: p ∈ X− is FV DX−(q), the restricted
farthest point of q in X−(q), if the following con-
ditions hold: (i) p ∈ X−(q), (ii) p is the far-
thest point from q among X−(q), and (iii) d(p, q) ≥
max(d(q, x−u ), d(q, x−b )). In the following we assume
that a vertical line passes through F . If the line passes
through a rectangle we will assume that it goes around
the right side of the rectangle.

Lemma 5 If p is FV DX−(q), for any vertical line l′ to
the right of q there exist a point q′ ∈ l′ for which p is
FV DX−(q′)

Proof. In case q is not on the left boundary of an
obstacle, let q′ be the point q dragged rightwards
till it hits an obstacle. Let dx be d(q, q′). Clearly
d(p, q′) = d(p, q)+dx while for any other point r ∈ X−,
d(r, q′) ≤ d(r, q) + dx. Therefore p is FV DX−(q′).
If q is on the left boundary of an obstacle g, let q′ be the
farthest point from p on the right boundary of g. Let u
(b) be the upper (lower) right corner of g (see Figure 1
middle). Let r 6= p be a point in X−, the following two
cases should be considered:
case 1: r ∈ X−(q). Observe that if r is above p,
d(p, u) > d(r, q) (by Theorem 4). Therefore, d(r, q′) =
d(r, u) + d(u, q′) < d(p, u) + d(u, q′) = d(p, q′) (be-
cause q′ is the farthest point from p on g). Hence
d(p, q′) > d(r, q′). A similar proof holds when r is below
p.
case 2: r /∈ X−(q). Let dx and dy denote x and y co-
ordinates difference between the points q and q′ respec-
tively. Observe the following: (i) d(p, q′) ≥ d(p, q)+dx+
dy while for every r /∈ X−(q) d(r, q′) ≤ d(r, q)+dx+dy,
(ii) for every r /∈ X−(q) and r ∈ X−(q′), the path
from r to q′ is xy-monotone and therefore d(r, q′) ≤
max(d(x−u , q′), d(x−b , q′)) ≤ d(p, q′). �

Theorem 6 Each cell in the farthest Voronoi diagram
of P ∪R in L1 metric is infinite.
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Figure 1: Left: b can not be the farthest point to the
left (b /∈ X−). Middle: any vertical line (to the right of
q) will cut the FV DX− cell of p (lemma 5). Right: a
construction showing that the farthest neighbor Voronoi
diagram can have complexity of Ω(mn) [1].

3 Farthest neighbor queries

In this section we describe a data structure for ‘farthest
point on the left’ queries in X−, denoted by FV DX−(.).
That is, for a query point q, find its farthest point among
X−(q)1. Let dX−(p, q) denote the following function:
dX−(p, q) = d(p, q): if p ∈ X−(q), dX−(p, q) = 0: if
p /∈ X−(q).

3.1 Computing a cut in the FVD

We first develop a method which determines, for an ar-
bitrary line l(x), the cut of l(x) with the X− farthest
Voronoi diagram (FV DX−). It is assumed that the in-
tersection of l(x) with the horizontal decomposition of
F is known. This is available in the form of a binary
tree which, when traversed in inorder fashion, reports
the intersection points on l(x) in increasing y-order. We
can use the persistent tree data structure [3] computed
by sweeping the horizontal decomposition of X−∪R by
a vertical line from left to right. This data structure
allows the access of the binary tree of any cut of the
decomposition by a vertical line in O(log n) time.
Given a set of points X− and a query vertical line l(x),
we want to find the ’cut’ that l(x) performs on FV DX− ,
more formally: find all p ∈ X− such that there exists a
point q ∈ l(x) for which p is FV DX−(q). The algorithm
uses the query mechanism developed by ElGindy and
Mitra [4]. The query mechanism preprocesses the set
of points X− and the rectangles R in O(N1.5 log N) re-
quiring O(N1.5) space such that distance query between
any corner point of the rectangles and a data point of
X− can be answered in O(N0.5) time.

Let Z(x) denote the set of intersection points of l(x)
with the horizontal decomposition of X− ∪ R. Let
Zj(x) denote the jth intersection point on l(x) from

1Note: this data structure might return ‘null’ in cases it is
clear that the farthest point of q is not from X−(q).

the bottom. The algorithm FVDsnapshot(A, k, k′),
described below, computes the intersection of the
FV DX− of the points in A with l(x), between
the intersection points Zk(x) and Zk′(x). Suppose
A = {x1, x2, . . . , xt} ⊆ X−.
Algorithm FVDsnapshot(A, k, k′)
step 0: If |A| = 1, Return.
step 1: If Zk(x) and Zk′(x) are consecutive on l(x),
compute the intersection of FVD of A on the segment
[Zk(x), Zk′(x)] on l(x). Return.
step 2: jm = d(k + k′)/2e, find2 xjm = FV DX−(Zjm(x)).
step 3: Compute FVDsnapshot({x1, x2, . . . , xjm}, jm, k′)
step 4: Compute FVDsnapshot({xjm , . . . , xt}, k, jm)

In order to refine the FV DX− cut between each two
consecutive points Zk(x), Zk′(x) ∈ l(x), we only need to
query distances (dX−) between Zk(x) and Zk′(x) to only
the points of A which falls in the corresponding X− range of
[FV DX−(Zk(x)), FV DX−(Zk′(x))]. The correctness of the
above divide and conquer algorithm follows from Theorem
4 and Lemma 5. Therefore,

Lemma 7 The complexity of the call
FVDsnapshot(X−, 1, |Z(x)|) is O(|X−|N0.5 log N).

Notice that besides the per query cost O(N0.5), m, the num-
ber of obstacles is involved in the term log N only.

3.2 Computing all cells of the FVD

In this section we address the problem of computing the
left most x-coordinate of each Voronoi cell of FV DX− . As
shown in Lemma 5 each cell of such FVD is infinite, and
new cells can only start after an obstacle event. Hence we
only need to attach each cell to the left most obstacle it is
starting from.If more than one Voronoi cell is attached after
an obstacle event, the list of cells attached to the rectangle
are kept in sorted y-order. Therefore, we are interested in
computing all the cuts in the FVD determined by the right
sides of the obstacles from where at least one new Voronoi
cell has started.

Let X−
e ⊆ X− be the set of points which actually de-

termine a Voronoi cell in FV DX− . X−
e can be easily de-

termined by calling FVDsnapshot(X−, 1, |Z(x)|) where the
vertical line l(x) lies to the right of R and P. We now look
for a vertical line l(xj) such that the number of Voronoi
cells intersecting l(xj) is at most |X−

e |/2 and the number of
Voronoi cells intersecting the vertical line l(xj′), determined
by the next obstacle event, is greater than |X−

e |/2. Using
the algorithm FVDsnapshot in a binary search mode, l(xj)
and l(xj′) can be found using only O(log N) probes.

Let < V P (q0), V P (q1), . . . , V P (qt) > be the sequence of
Voronoi cells intersecting l(xj) in increasing y-order. Let
< V P (pi0), V P (pi1), . . . , V P (pit′ ) > be the sequence of

2If FV DX− (Zjm (x)) is undefined, find the point q′ (which
is the Y -projection of Zjm (x) on l(x′) - the next event line to
the right of l(x)). If q′ falls inside an obstacle, or FV DX− (q′)
is still undefined, mark Zjm to be ‘null’ and set xjm to be the

extrema point (x−b or x−u ) it is farthest from. Else set xjm to be
FV DX− (q′).
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Voronoi cells intersecting l(xj′) in increasing y-order. Ac-
cording to Theorem 4, {q0, q1, . . . , qt} ⊂ {pi0 , pi1 , . . . , pit′ }.
Snapshots on l(xj) and l(xj′) partition the problem of com-
puting all the Voronoi cells into the following similar sub-
problems.

(a) Determine the FVD of {q0, q1, . . . , qt} to the left of l(xj).

(b) Determine the FVD of {pis , . . . , pis+1}, s =
{1, 2, . . . , t′ − 1} to the right of l(xj′).

If pis and pis+1 are consecutive in X−
e in y-order, no

more partition is needed. This is the base case. In case
(b) the points are partitioned, and the size of each set
{pis , . . . , pis+1} is at most |X−

e |/2 + 2. Therefore,

Theorem 8 All the relevant vertical snapshots of FVD of
X− can be computed in O(nN0.5 log2 N) time. The storage
space requirement is O(N1.5).

3.3 A compact representation of the FVD

In the previous section the starting point of each Voronoi
cell has been determined. The starting point of each cell is
attached to the right hand side of some rectangle. If more
than one cell starts from the same rectangle, these cells are
listed in increasing y-order. We are now interested in pre-
senting the FV DX− . Hence we need to construct a data
structure that holds all the vertical FVDsnapshots of the
farthest Voronoi cells of X− (in there y-order). An explicit
representation of all these FVDsnapshots has an O(mn) size
(see Figure 1 right). Therefore, we use a compact implicit
representation based on the persistent tree data structure [3].
This data structure allows the access of the binary tree of
any ’cut’ of the decomposition by a vertical line in O(log n)
time. At first the persistent tree PT is empty, then we go
over all the obstacles according to there x-order (left to right,
as implied by there right edge x-coordinate). For each obsta-
cle, the list of (new) cells that was attached to it, is inserted
to PT .

Now, the persistent tree PT can support in O(log n) time
the following query: given a vertical line l(x) and an integer
k, find the farthest Voronoi cell in the FV Dsnapshots(l(x))
which is in the kth position according to the cells y-order (if
undefined return ’null’).

Corollary 9 A persistent tree of size O(n) (which stores the
left starting point of each farthest Voronoi cell of X−

e ), can
be used to implicitly represent the furthest Voronoi diagram.

Theorem 10 The implicit FVD of X− can be computed
in O(N1.5 log2 N) time. The storage space requirement is
O(N1.5).

3.4 Query mechanism for the FVD

Given a query point q we want to find the farthest point
to its left (the farthest point of X− from which there is an
x-monotone path), More formally, we want to find if there is
a point p ∈ X− which is FV DX−(q). Observe that if there
is no such p, the furthest point of q, is from X+ ∪Y− ∪Y+.

FVD query algorithm: find the first obstacle rq to the
left3 of q. This obstacle can be found in O(log m) time us-
ing a planar point location data structure [5]. Next, use the
persistent tree PT , to find a ‘middle’ farthest cell (pmid) of
the FVDsnapshot associated with the right edge of rq. Let
u (b) be the up (low) right corner of rq. Compute d(u, pmid)
and d(b, pmid) using ElGindy and Mitra [4] query mecha-
nism. Let du = d(pmid, u)+ d(u, q), db = d(cmid, b)+ d(b, q).
If du < db, search PT ‘below’ pmid, else search PT ‘above’
pmid.

Using log(n) iterations of binary search, FV DX−(q) can
be found in total time of O(N0.5 log n). Similarly we can
find the farthest points of q in X+, Y− and Y+. Let p′ ∈
P be the maximum distance over the above four farthest
points. Let p′′ ∈ P be the farthest point of q in the L1 free
space (ignoring all obstacles). The farthest point of q is the
maximum over p′ and p′′.

Theorem 11 One can construct a data structure of size
O(N1.5) in O(N1.5 log2 N) time, such that the farthest point
of a query point q can be found in O(N0.5 log n) time.

Using the implicit FVD data structure one can perform a
farthest neighbor query from each of the points in P, thereby
obtaining all farthest neighbors pairs. This can be done in
O(N0.5 log n) time.

Corollary 12 Once the implicit FVD of P is known, one
can compute all farthest neighbors pairs and hence the diam-
eter in O(nN0.5 log n) time4.
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