
Cutting Out Polygons

Ramaswamy Chandrasekaran ∗ Ovidiu Daescu∗† Jun Luo∗

Abstract

In this paper, we present approximation algorithms for
the problem of cutting out a convex polygon P with n
vertices from another convex polygon Q with m vertices
by a sequence of guillotine cuts of smallest total length.
Specifically, we give an O(n3 + m) running time, con-
stant factor approximation algorithm, and an O(n+m)
running time, O(log n)-factor approximation algorithm
for cutting P out of Q. We also discuss some negative
results for the case when guillotine cuts are replaced by
ray cuts.

1 Introduction

Two decades ago Overmars and Welzl [5] studied the
problem of cutting out a polygon P from another poly-
gon Q in the cheapest possible way. The problem falls
in the general area of stock cutting, where a given shape
needs to be cut out from a parent piece of material, and
it is defined as follows:

Given a polygonal piece of material Q with a
polygon P drawn on it, cut P out of Q by a
sequence of “guillotine cuts” in the cheapest
possible way.

A guillotine cut (also called line cut) is a line cut that
does not cut through the interior of P and separates Q
into a number of pieces, lying on both sides of the cut.
A guillotine cut is an edge cut if it cuts along an edge
of P . After a cut is made, Q is updated to that piece
that still contains P . A cutting sequence is a sequence of
cuts such that after the last cut in the sequence we have
P = Q (see Fig. 1). The cost of a cut is the length of the
intersection of the cut with Q and the goal is to find a
cutting sequence that minimizes the total cost. Clearly,
the polygon P must be convex for a cutting sequence to
exist.

Overmars and Welzl [5] proved a number of properties
for the case when both P and Q are convex polygons, in-
cluding the existence of a finite optimal cutting sequence
with O(n) cuts, all touching P . They further noted that
when Q is not convex there are cases in which there is
no optimal cutting sequence with all cuts touching P .
When only edge cuts are allowed Overmars and Welzl

∗Department of Computer Science, University of Texas at Dal-
las, {chandra,daescu,ljroger}@utdallas.edu

†Daescu’s research is supported by NSF grant CCF-0430366.

Q Q Q

Q Q

P P

P P

l

l

l

l

1

2

3

4 P

Q=P

P

Figure 1: A cutting sequence (bold lines) {l1, l2, l3, l4}
for cutting P out of Q.

proved an optimal cutting sequence can be computed
in O(m + n3) time by a simple dynamic programming
algorithm.

In [1], Bhadury and Chandrasekaran showed that the
problem of cutting P out of Q has optimal solutions that
lie in the algebraic extension of the field that the input
data belongs to. They also provided an approximation
scheme that, given an error range δ, is polynomial in δ
and the encoding length of the input data in unary, and
gives a cutting sequence C(δ) with total cost at most δ
more than that of an optimal cutting sequence C∗.

In [4], Dumitrescu proved that there exists an
O(log n)-factor approximation algorithm, which runs in
O(mn + n log n) time, for cutting out a convex polygon
P from a convex polygon Q. He also raised the fol-
lowing questions: (1) If Q is the minimum axis-aligned
rectangle enclosing P , is an optimal edge-cutting se-
quence a constant factor approximation of an optimal
cutting sequence? (Answering this question in an affir-
mative sense results in a constant-factor approximation
algorithm for cutting P out of Q.) (2) Is it possible to
extend the results for guillotine cutting to ray cutting?

Daescu and Luo [2], affirmatively answered the first
question and presented an O(n3 + (n + m) log(n + m)),
constant factor approximation algorithm, for cutting P
out of Q when both P and Q are convex polygons. They
also presented an O((n+m) log(n+m)), O(log n)-factor

approximation algorithm for the same problem.
The related problem in which guillotine cuts are re-

placed by ray cuts, where a ray cut runs from infin-
ity to some point in Q, has been less studied. In this
case, some non-convex polygons are ray-cuttable. These
polygons have the property that every edge of the poly-
gon must be extendible to a ray. As observed in [3] by
Demaine et al., this condition is more restrictive than
(weakly) external visibility, which requires that every
point on the boundary of P can “see” to infinity. A lin-
ear time algorithm to test the ray cuttability of a poly-
gon P is given in [3]. In [2], they show how to extend the
line cutting solution to construct an approximate ray
cutting sequence, thus answering the second question
from [4]. Specifically, they present an O(log2 n)-factor
approximation algorithm for cutting P out of a convex
polygon Q, when P is ray cuttable, with running time
O(m + n log n). The key idea is a recursive procedure
for cutting out a ray cuttable polygon P from its convex
hull in O(log n) steps, in each step constructing a ray
cutting sequence based on some line cutting sequence.
Our results. To cut a convex polygon P with n ver-
tices from a convex polygon Q with m vertices the algo-
rithms in [2, 4] involve two phases: a separation phase,
that cuts out a triangle enclosing P and of size about
the size of P , and a carving phase, in which P is cut
out of that triangle. The carving phase can be carried
out in O(n3) time or in O(n) time, depending whether
an O(1)-factor or an O(log n)-factor approximation is
sought, respectively. The separation phase consists of
computing two cuts of small total length, after which a
third small length cut to form the triangle can by made
in constant time.

In [2] they showed how to find the first two cuts in
O((n+m) log(n+m))) time. Here, we give an O(n+m)
time algorithm to find these two cuts. In turn, this
leads to O(m + n3) time or O(m + n) time algorithms
to cut out a convex polygon P from a convex polygon
Q, depending whether an O(1)-factor or an O(log n)-
factor approximation is sought, respectively. Thus, our
algorithms improve over those in [2] by a logarithmic
factor in time.

We next present some negative results with respect to
improving the approximation bound of the ray cutting
algorithm in [2]. That algorithm involves three phases:
(1) cutting out a triangle containing P of about the
same size as P , (2) cutting out the convex hull CH(P)
of P from that triangle and (3) cutting out the pockets
of P from its convex hull. The key phase is the third
phase. In this phase, a pocket of P is cut out from
CH(P) in O(log n) recursive steps. Each step relies
on constructing a ray cutting sequence from a line cut-
ting sequence; the line cutting sequence is found by the
same algorithm for the carving phase of the line cutting
problem, that cuts out P from the smallest axis aligned

rectangle enclosing P .
Consider the stronger assumption that we have an al-

gorithm to efficiently compute an optimal (and for that
matter an approximate) ray cutting sequence for cutting
out P from the smallest axis aligned rectangle enclosing
P . Then, we prove that in general one cannot use opti-
mal ray cutting sequences (or approximate ray cutting
sequences) computed by such an algorithm to replace
the ray cutting sequences constructed in the third phase
of the ray cutting algorithm in [2]. This suggests that in
order to reduce the O(log2 n) approximation factor one
should use an approach different from the one in [2].

2 Cutting out polygons with guillotine cuts

Our approach for solving the problem resembles that
in [2] (see above). Since our solution differs from the
one in [2] in the separation phase, we only focus on this
phase. As mentioned above, in the separation phase,
three line cuts are used to obtain a triangle that encloses
P and has perimeter roughly the same as that of P .

Our solution for the separation phase involves a solu-
tion for the following subproblem. Consider a bounded
x-monotone polygonal chain Π and a real value c. For
a point q = (qx, qy) on Π we define the window W (q)
of q as the vertical strip bounded by the lines of x-
coordinates qx − c and qx + c, that is, the vertical strip
centered at q and of width 2c. We use Wo(q) when
W (q) is open at qx − c and qx + c and Wc(q) when it
is closed. The goal is to find two points a = (ax, ay)
and b = (bx, by) such that ay + by is minimized and
b /∈ Wo(a).

Lemma 1 Given a bounded x-monotone polygonal
chain Π with n vertices and a real value c, a pair of
points a = (ax, ay), b = (bx, by) such that ay + by is
minimized and b /∈ Wo(a) can be found in linear time.

To prove Lemma 1 we first make the following obser-
vation. Let a0 = (x0, y0) ∈ Π be the point of smallest
y-coordinate and let a1 = (x1, y1) ∈ Π be the point of
second smallest y-coordinate.

Observation 1 If a1 ∈ W (a0) then the points a =
(ax, ay), b = (bx, by) such that ay + by is minimized
and b /∈ Wo(a) are within Wc(a0).

Proof. If one of the two points, say b, is outside the
window Wc(a0) then we can use a0 instead of a to obtain
a better cut. ¤

Proof. (Lemma 1) Let a0 = (x0, y0) ∈ Π be the point
of smallest y-coordinate and let a1 = (x1, y1) ∈ Π be
the point of second smallest y-coordinate. Clearly, a0

and a1 can be found in linear time. If a1 /∈ W (a0) we
set a = a0 and b = a1 and we are done. Then, consider
the case when a1 ∈ W (a0). We set a = a0 and set b to

the point of Π with x-coordinate x0 +c. Starting with a
window bounded by the vertical line ll = x0 to the left
and the vertical line lr = x0 + c to the right, slide this
window to the left until ll becomes the left bounding
line of Wc(a0) (that is, perform a line sweep of W (a0)
until ll becomes the left bounding line of Wc(a0)). The
window stops at each vertex of Π∩Wc(a0). During this
sweep, we maintain the smallest y-coordinate ymin of
Π swept by lr. If we get a smaller value for the sum of
ymin and the y-coordinate of the point Π∩ ll, we update
a and b accordingly. Clearly, this sweep can be done in
linear time. ¤

Our algorithms use Lemma 1 above with some small
changes. First, between any two consecutive vertices of
Π we have a convex curve rather than a line segment.
Second, the line sweep should be “wrapped around” at
the end points of Π if necessary. It is easy to see these
changes do not affect the time complexity to find the
points a and b and we ignore the wrap around in the
description below.

We now adapt the algorithm in [2] to find the two
cuts of total smallest length in linear time.

For a line cut l, the length of l is denoted as |l|. The
angle of the line cut that is parallel to the x-axis and
tangent to P from below is 0◦. The angle increases
gradually as the line cut rotates counter-clockwise along
the boundary of P while being tangent to P . Thus, we
have that θ ∈ [0◦, 360◦).

The problem is to find two cuts l1 and l2 such that
(1) l1 and l2 are tangent to P , (2) the angle between l1
and l2 is such that |θ1− θ2| /∈ [0◦, 20◦) and (3) |l1|+ |l2|
is minimized.

Let l be a line tangent to P and along the edge vi−1vi

of P , with 1 ≤ i ≤ n and v0 = vn, and consider rotating
l around vi until it overlaps with the edge vivi+1 or it
touches a vertex of Q. Then, in this angle interval θ ∈
[θ1

i , θ2
i], the length |l| = l(θ) of l is a convex function [1].

The functions l(θ) defining the cut length |l| for all the
O(n + m) angle intervals can be computed in O(n + m)
time by rotating l along the boundary of P (similar to
the rotating calipers technique [6]). The diagram of l(θ)
is a continuous function that consists of O(n+m) convex
curves, and it has O(n + m) local minima.

The algorithm is as follows:
1: Let M = {m1,m2, . . . ,mp} be the list of local min-

ima, where p = O(m + n) is the number of local
minima. Let the corresponding angles and cuts be
A = {a1, a2, . . . , ap} and C = {c1, c2, . . . , cp}, re-
spectively. Note that the cuts are such that a1 <
a2 < . . . < ap.

2: Find the two cuts l1, l2 ∈ C of smallest length, with
|l1| ≤ |l2|. Let θ1 and θ2 be the angles of l1 and l2,
respectively.

3: Set l = |l1|+ |l2|.
4: if |θ1 − θ2| ∈ [0◦, 20◦) then

5: Set l = |l1| + min{|c−20◦ |, |c+20◦ |} where c−20◦

and c+20◦ are the two cuts of angle θ1 − 20◦ and
θ1−20◦ respectively. Then, perform a sweep as in
Lemma 1 within the angle interval (θ1− 20◦, θ1 +
20◦), starting with a sliding window that has the
left line ll = θ1 and the right line lr = θ1 + 20◦.
During this sweep, if we find two cuts of smaller
total length we update l accordingly.

6: end if

Lemma 2 Given two convex polygons P and Q, with
P ⊂ Q, we can find the two cuts l1 and l2 of minimum
total length lmin = |l1|+ |l2| in O(n + m) time.

Proof. Use the algorithm above. The total running
time is O(n+m) since finding the two smallest cuts inM
takes O(n+m) time and the cost of the sweep is O(n+
m), as only insertions of local minima are required. We
next argue that lmin = |l1| + |l2|, as computed by the
algorithm above, is of minimum length. Let θ1 and θ2 be
the angle of the cuts l1 and l2, respectively. Let θmin be
the angle corresponding to the cut of smallest length.
We have θ1 = θmin and θ2 6∈ (θ1 − 20◦, θ1 + 20◦) or
θ1 ∈ (θmin−20◦, θmin) and θ2 ∈ [θ1+20◦, θmin+20◦) or
θ1 ∈ (θmin, θmin + 20◦) and θ2 ∈ (θmin − 20◦, θ1 − 20◦].
We check all possible pairs (l1, l2) during the window
sweep and maintain the smallest cut length for |l1|+ |l2|
over all such pairs. 2

From Lemma 2 it follows that the separation phase
can be done in O(n + m) time. Recall from Section 1
that the carving phase can be carried out in O(n3) time
or in O(n) time, depending whether an O(1)-factor or an
O(log n)-factor approximation is sought, respectively.
Putting these together we have:

Theorem 3 Given two convex polygons P and Q, P ⊂
Q, with n and m vertices, respectively, an O(1)-factor
approximation of an optimal cutting sequence for cut-
ting P out of Q can be computed in O(n3 + m) time.
An O(log n)-factor approximation of an optimal cutting
sequence can be found in O(n + m) time.

3 The Ray Cutting Problem

In this section we present some negative results with
respect to improving the approximation bound of the
ray cutting algorithm in [2]. Here, P is a ray cuttable
polygon and Q is a convex polygon, with P ⊂ Q.

The algorithm in [2] involves three phases. The first
phase cuts out a triangle containing P of about the same
size as P , in O(m + n) time. The cost of this cutting
sequence is an O(1)-factor more than the cost of an op-
timal ray cutting sequence for P . The second phase
cuts out the convex hull CH(P) of P from that trian-
gle, in O(n) time. It uses the O(n) time algorithm for
the carving phase of the line cutting problem, producing

s ta

v

P’b

P

2r

1r

Figure 2: Two rays r1 and r2 for cutting out CHvs; the
ray r2 cuts through P .

a cutting sequence of cost O(|P | log n), where |P | is the
perimeter of P . Thus, the cost of this cutting sequence
is an O(log n)-factor approximation of an optimal ray
cutting sequence for P . The third phase cuts out the
pockets of P from its convex hull, CH(P). In this phase,
a pocket of P is cut out from CH(P) in O(log n) recur-
sive steps. Each step relies on constructing a ray cutting
sequence from a line cutting sequence; the line cutting
sequence is found by the same algorithm for phase two
above. This phase takes O(n log n) time and produces
a cutting sequence that is an O(log2 n)-factor approxi-
mation of an optimal ray cutting sequence for P .

Naturally, one could ask the following question: if
an algorithm to efficiently compute an optimal (and for
that matter an approximate) ray cutting sequence for
cutting out P from the smallest axis aligned rectangle
enclosing P is known, would that improve the approxi-
mation bound in phase three?

Here, we prove that in general one cannot use opti-
mal ray cutting sequences (or approximate ray cutting
sequences) computed by such an algorithm to replace
the ray cutting sequences constructed in the third phase
of the ray cutting algorithm in [2]. Our result suggests
that in order to reduce the O(log2 n) approximation fac-
tor one should use an approach different from the one
in [2].

Lemma 4 In general, optimal ray cutting sequences
(or approximate ray cutting sequences) cannot be used
to replace the ray cutting sequences constructed in the
third phase of the ray cutting algorithm in [2].

Proof. The key subproblem within some step of the
third phase is illustrated in Fig. 2. Here, P ′ is a pocket
of P (the portion of Q between P and an edge st of
CH(P) \P). The goal for this subproblem is to cut out
CHvs, representing the shortest path in Q\P from v to
s. The example in Fig. 2 shows that in general one can-
not use regular ray cuts to cut out CHvs, and thus the
pocket P ′ of P . The reason is that in general an optimal

(or approximate) ray cutting sequence for cutting out
CHvs from its smallest enclosing rectangle, computed
with no consideration to the context of the larger prob-
lem, can have rays that cut through P , as does the ray
r2 in Fig. 2. There, r2 ends at point b on another ray
cut r1 and thus it must extend to infinity at the other
end, thus cutting through P . In contrast, the algorithm
in [2] constructs a particular ray cutting sequence in
which all rays start at infinity, cross st, and end on a
special ray cut (cut av in Fig. 2). In general, the cost of
this ray cutting sequence could be much higher than the
cost of an optimal ray cutting sequence (but not more
than an O(log n)-factor). ¤

4 Conclusion

In this paper we discussed approximation algorithms for
the problem of cutting out a convex polygon P from an-
other convex polygon Q by a sequence of guillotine cuts
of smallest total length. We presented an O(n3 + m)
running time, constant-factor approximation algorithm,
and an O(n+m) running time, O(log n)-factor approx-
imation algorithm for cutting P out of Q. We also dis-
cussed negative results for the case when guillotine cuts
are replaced by ray cuts within the context of the ray
cutting algorithm in [2]. These results give more insight
into the complexity of the ray cutting problem.

References

[1] Bhadury, J. and Chandrasekaran, R.: Stock cutting to
minimize cutting length. European Journal of Opera-
tional Research. 88 (1996) 69–87.

[2] Daescu, O., Luo, J.: Cutting out polygons with lines
and rays. Proc. 15th Annual International Symposium
on Algorithms and Computation (ISAAC’04), LNCS
3341, (2004), 669–680.

[3] Demaine, E.D., Demaine, M.L. and Kaplan,C.S.: Poly-
gons cuttable by a circular saw. Computational Geom-
etry: Theory and Applications. 20 (2001) 69–84.

[4] Dumitrescu, A.: An approximation algorithm for cut-
ting out convex polygons. Computational Geometry:
Theory and Applications. 29(3) (2004) 223–231.

[5] Overmars, M.H. and Welzl, E.: The complexity of cut-
ting paper. Procs. of the 1st Annual ACM Symposium
on Computational Geometry. (1985) 316–321.

[6] Toussaint, G.T.: Solving geometric problems with the
‘rotating calipers’. Procs. MELECON, Athens, Greece,
1983.

