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Abstract

In this paper we consider an extension of the classical
facility location problem where besides n customers, a
set of p collection depots are also given. In this set-
ting the service of a customer consists of the travel of a
server to the customer and return back to the center via
a collection depot. We have analyzed the problem and
showed that the collection depots problem can be trans-
formed to O(n2p2) number of different classical facility
location problems and this bound is tight.

1 Introduction

Given is a set of customers or demand points C =
{c1, c2, . . . , cn} where each customer ci is associated
with weight wi. Also given is a set of collection depots
D = {d1, d2, . . . , dp}. A facility serving a customer dis-
patches a vehicle that visits the customer and returns to
the facility through the collection depot which provides
the shortest route. The goal is to minimize the trav-
elled distance. The objective function to be minimized
depends on the application. One of the widely used ob-
jective functions is to locate the facility at a point that
minimizes the maximum of the weighted distance of the
round-trip to all the customers. That is, the goal is to
minimize F (s), where

F (s) =
n

max
i=1

wi.{d(s, ci) + min
1≤j≤p

{d(ci, dj) + d(dj , s)}}.

Here d(a, b) indicates the Euclidean distance between
the points a and b. This problem is known as the 1-
center or MinMax collection depot problem.

Another objective function is G(s), where

G(s) =

n∑

i=1

wi.{d(s, ci) + min
1≤j≤p

{d(ci, dj) + d(dj , s)}}.
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This problem is known as the 1-median or the MinSum
collection depot problem.

We see that the depot associated with a customer
varies as the service center is moved. Let Is denote the
assignment vector of length n where Is[i] indicates the
depot assigned to customer ci when the service facility
is at s. In this case F (s) and G(s) can be rewritten as

F (s) =
n

max
i=1

wi.{d(s, ci)+{d(ci, Is[i])+d(Is[i], s)}} . . . (1)

and

G(s) =
n∑

i=1

wi.{d(s, ci)+{d(ci, Is[i])+d(Is[i], s)}} . . . (2)

Note that the assignment vector is the same for a par-
ticular s for both the objective functions F (s) and G(s).

The collection depot problem was first introduced by
Drezner and Wesolowsky [1]. The MinMax and Min-
Sum collection depot problems are essentially general-
ized versions of the classical MinMax and MinSum fa-
cility location problems respectively (consider the case
when every client also coincides with a collection depot).
Different variations of this problem can be defined, de-
pending on the distance metric used. Several applica-
tions are described in Drezner and Wesolowsky [1, 2],
such as a septic tank cleaning service, garbage collec-
tion or tree pruning service. In each of these problems
either the MinMax or the MinSum objective is appro-
priate. One may wish to minimize the total operation
cost, in which case the MinSum objective is appropriate,
or one may wish to minimize the largest service time,
in which case the MinMax objective is the right one to
apply.

It is natural to ask how many different values for the
depot assignment vector Is exist for any placement of
the facility in the plane. An obvious upper bound is
O(pn), but tighter bounds should exist. Drezner and
Wesolowsky [1] left this question open. In this paper we
show that the bound is O(n2p2) and it is tight in the
worst case. In addition, the depots assignment vectors
can be generated in O(p2n2 log(pn)) time. Thus the col-
lection depots problem can be transformed to O(p2n2)
classical MinMax and MinSum facility location prob-
lems. Tamir and Halman [8] gave an O(p2n2 log3(pn))
algorithm for the MinMax collection depots problem us-
ing the parametric search technique [6]. In this note a
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Figure 1: The bisector is an arm of the hyperbola; de-
pots are drawn as triangles, and clients as rectangles

better understanding of the MinMax collection depots
problem is provided. Classical MinSum has been shown
to be not exactly solvable. However, many practical nu-
merical methods exist. For the first time, the MinSum
collection depots problem can now be solved using the
classical MinSum algorithm as a subroutine.

2 General Properties

In this section some elegant properties of the collection
depots problems are described. A customer c and de-
pots d1 and d2 partition the plane into two regions R1

and R2 in such a way that for any point q in R1, the
round trip from q to c through d1 is smaller than the
round trip from q to c through d2, and similarly for any
point q in R2, the round trip from q to c through d2 is
smaller than the round trip from q to c through d1. Let
the curve that partitions the plane into R1 and R2 be
denoted by η which may not be a straight line. Note
that any point q on η, that is on the boundary of R1

and R2, must satisfy the following equation

d(q, c)+d(c, d1)+d(d1, q) = d(q, c)+d(c, d2)+d(d2, q) . . . (3).

We can easily show that

Lemma 1 The locus of the points satisfying the equa-
tion (3) is an arm of a hyperbola (Fig. 1).

Let us denote the two arms of the hyperbola h as h1

and h2 where d1 and d2 are two foci of h. Then any point
q on h satisfies the equation (d(q, d1) − d(q, d2)) = α
where α = d(c, d2) − d(c, d1) is constant. Note that,
if d(q, d1) − d(q, d2) is positive for any q on h1, then
d(q, d1) − d(q, d2) is negative for any point q on h2.

Therefore, the following observations can be made.

Observation 1 η does not contain both the arms h1

and h2 of the hyperbola h.

Observation 2 If η contains arm h1 of the hyperbola
h then customer c must be on arm h2.

Without any loss of generality, assume that d(c, d2)−
d(c, d1) ≥ 0. Using the triangular inequality, we can
say that d(c, d2) − d(c, d1) ≤ d(d1, d2). Note that when
d(c, d2) − d(c, d1) = d(d1, d2) then c, d1 and d2 are
collinear and d1 is in between c and d2. In that case,
for any q,

d(q, c) + d(c, d1) + d(d1, q) ≤ d(q, c) + d(c, d2) + d(d2, q)

which implies that the the region R2 has an empty in-
terior. The face separating R1 and R2 is basically the
half line [d2,∞) on the straight line l defined by c, d1

and d2.
Hence

Observation 3 When d(c, d2) − d(c, d1) = d(d1, d2)
then η is a half line [d2,∞) on the straight line l.

¿From the above observations, the following lemma
can be established.

Lemma 2 η is either a half line [d2,∞) on the straight
line l or an arm of the hyperbola h.

Lemma 3 If two hyperbolas have the same set of foci,
then either they coincide or they are parallel, i.e. they
never intersect properly.

Let d1 and d2 be two depots. Let ηi denote the sep-
arating hyperbolic arm separating regions Ri

1 and Ri
2

defined for customer ci (as before, a facility in Ri
1 uses

depot d1 for client ci rather than d2). From the above
lemma we can conclude that

Lemma 4 The hyperbolic arms ηi, i = 1, 2, . . . , n do
not properly intersect, and therefore they partition the
plane into n + 1 regions such that a service center in
any of these regions fixes the optimal choice of the depot
relative to d1 and d2 for each customer.

Let us denote Hij as the set of n non intersecting
hyperbolic arms determined by depots di and dj and
the set of customers C. As any two elements of the set
Hij cannot intersect and two elements of distinct sets
can intersect at most two times, we can conclude the
following lemma.

Lemma 5 Two sets of mutually non intersecting hy-
perbolic arms Hij and Hkl intersect in at most O(n2)
points.

Since p(p − 1)/2 possible unordered pairs of depots
generate sets {Hij |i = 1, 2, . . . , p, j = 1, . . . , i−1} where
each one is a collection of O(n) non intersecting hyper-
bolic arms, we can conclude the following theorem.

Theorem 6 At most O(n2p4) different feasible assign-
ments of depots are possible for any choice of a service
center in the Euclidean metric.
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2.1 An Improvement

In this section we show that the bound in Theorem 1
can be improved to O(n2p2) and this bound is tight in
the worst case.

Let c be a customer of C. For each di of D, we are
interested in computing Vc(D, di) which is the locus of
points in the plane such that for any service center in
Vc(D, di), the shortest tour to c uses the depot di among
all depots in D, i.e.

Vc(D, di) = {x|d(x, c)+d(c, di)+d(di, x) ≤ d(x, c)+d(c, dj)

+ d(dj , x) ∀j}

Lemma 7 Each Vc(D, di) is unbounded.

Proof: Consider the Voronoi polygon Vc(D, di). Con-

sider the ray starting from di in the direction of ~cdi.
Clearly for any facility z on the ray, the nearest depot
for the customer c is di. Therefore, z ∈ Vc(D, di). �

As a consequence of the above lemma we can claim
that

Theorem 8 Vc(D) = ∪p
i=1Vc(D, di) for each c ∈ C

partitions the plane into exactly p regions and contains
at most 2p−4 vertices and 3p−6 edges (hyperbolic arcs).

These diagrams Vci
(D), i = 1, 2, . . . n need to be

merged together to determine the set of all feasible as-
signments of depots. Since each edge in Vci

(D) can
intersect all the edges in Vcj

(D), ∀cj 6= ci in the worst
case, Theorem 6 can be improved as follows

Theorem 9 At most O(n2p2) different feasible assign-
ment of depots is possible for any choice of a service
center in Euclidean metric.

It is possible to construct an example to show that the
above bound is tight. First, the arrangement consists of
a vertical line of depots. A single customer c to the right
of the lowest depot produces Vc(D) of Figure 2 Depots
are displayed as triangles, and customers are displayed
as squares.

Adding a second customer to the right of the highest
depot produces Figure 3. The idea can be extended by
adding additional customers to the right of the existing
customers (Figure 4). This way we can generate an
example whose number of feasible assignment of depots
is Θ(n2p2).

2.2 Computing Vc(D)

Let ui denote the distance of di to c. Then we can
rewrite Vc(D, di) by

Vc(D, di) = {x|dist(x, di)+ui ≤ dist(x, dj)+uj, ∀j ∈ D}.

Figure 2: Voronoi diagram involving one customer

Figure 3: Voronoi diagram involving two customers

Figure 4: Worst case situation

Thus Vc(D) is the additively weighted Voronoi di-
agram of D where di is associated with the additive
weight dist(c, di). This diagram can be computed in
O(p log p) time [5]. We can then compute ∪n

i=1Vci
(D)
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in O(p2n2 log(pn)) time using the standard plane sweep
technique. The resulting merged picture partitions the
plane into at most O(p2n2) regions such that for any
point in a particular region, the depots assignment for
the customers of C remains the same. Therefore,

Lemma 10 All different feasible assignment of depots
can be computed in O(p2n2 log(pn)) time using O(pn)
space.

3 MinMax problem

¿From the previous theorem we observe that the Min-
Max collection depots problem can be solved by resolv-
ing a slightly extended version of the classical Euclidean
weighted MinMax problem for each of the O(p2n2) pos-
sible feasible assignments of depots. In our case (i.e.
when a region is fixed), each customer is associated with
a multiplicative as well as an additive weight. A lin-
ear time algorithm is known for the classical Euclidean
MinMax problem [6] This algorithm can be modified to
solve our version of the problem. However, we can do
better.

Tamir and Halman [8] presented an O(p2n2 log3(pn))
algorithm for the MinMax collection depots problem.
The algorithm is based on the parametric approach of
Megiddo [6] which requires an efficient parallel imple-
mentation for the following decision problem (called
covering problem): Determine whether there exists a
facility location such that the maximum round trip cost
of the customers of C is at most r.

Let

Yi(r, dj) = {x|dist(x, ci)+dist(x, dj) ≤
r

wi

−dist(ci, dj)}.

Here Yi(r, dj) represents an ellipse where for any y in the
ellipse, the round trip distance from y through ci and
dj is no more than r. Let Zi(r) = ∪p

j=1Yi(r, dj). For
the covering problem we ask the question: Is ∩n

i=1Zi(r)
empty? It was argued in [8] that the boundary of Zi(r)
can have O(p2α(p)) vertices and elliptical arcs where
α(p) is the functional inverse of the Ackermann’s func-
tion. However it can be shown that

Lemma 11 The size of the boundary of Zi(r) is O(p).

Proof: Since in the round-trip from any facility location
to a customer ci uses the depot that minimizes the trip
cost, we are only interested in the part of each Yi(r, dj)
which lies inside Vci

(D, dj). Let Y ′
i (r, dj) = Yi(r, dj) ∩

Vci
(D, dj), i = 1, 2, . . . n, and Z ′

i(r) = ∪n
j=1Y

′
i (r, dj), i =

1, 2, . . . , n. Clearly, Y ′
i (r, dj) and Y ′

i (r, dk) for any j 6= k
can share at most one edge. Therefore, the boundary
description of Z ′

i(r) is the same as that of Vci
(D), which

is O(p). �

As described in [8], whether ∩n
i=1Z

′
i(r) is non-empty

can be tested in O(p2n2 log(pn)) ( Section 6 in Sharir

and Agarwal [7]). The optimal value of the MinMax
collection depots problem is the smallest r of the cov-
ering problem for which ∩n

i=1Z
′
i(r) is non-empty. For

this we apply the parametric approach of Megiddo [6].
Therefore [8]

Theorem 12 The optimal solution to the Min-
Max collection depots problem can be computed in
O(p2n2 log3(pn)).

4 MinSum problem

It was observed in [1] that G(s) in equation (2) can
rewritten as follows:

G(s) =
∑n

i=1 wid(s, ci) +
∑n

i=1 wi(ci, Is[i])
+

∑n

i=1 wi(Is[i], s)
= G1(s) + G2(s) + G3(s)

For a given assignment vector I, G2(s) is constant.
Therefore, for a given I, minimizing G(x) is the same
as minimizing G1(x) + G3(x) which is the classical
MinSum problem of n + p variables. Therefore,

Theorem 13 The MinSum collection depot problem
can be solved in O(p2n2) times the time it takes to solve
the classical MinSum problem.
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