
Finding and Maintaining Rigid Components

Audrey Lee∗‡ Ileana Streinu†‡ Louis Theran∗‡

Abstract

We give the first complete analysis that the complexity
of finding and maintaining rigid components of planar
bar-and-joint frameworks and arbitrary d-dimensional
body-and-bar frameworks, using a family of algorithms
called pebble games, is O(n2). To this end, we intro-
duce a new data structure problem called union pair-
find, which maintains disjoint edge sets and supports
pair-find queries of whether two vertices are spanned
by a set.

We present solutions that apply to generalizations of
the pebble game algorithms, beyond the original rigidity
motivation.

1 Introduction

Efficient algorithms for rigidity are important for prac-
tical applications, such as protein flexibility[6]. Rigidity
of planar bar-and-joint frameworks is well-understood
and characterized by Laman graphs. The pebble game
of Jacobs and Hendrickson[5] is an elegant algorithm
for deciding rigidity and finding the rigid components
in the planar case. Despite its simplicity, its complexity
has never been fully analyzed in terms of the necessary
data structures, even in the more recent version by Berg
and Jordan[1].

Tay’s characterization[9] for d-dimensional body-and-
bar frameworks is the only known combinatorial tool
for handling rigidity in higher dimensions. In [7], the
first two authors generalize [5] to a family of pebble
games on a larger class of graphs called (k, l)-sparse
graphs (defined below) including (k, l)-arborescences;
the graphs needed to handle generic rigidity via the
theorems of Laman and Tay are both instances of (k, l)-
arborescences.

In this paper, we complete the analysis of the peb-
ble game algorithms of [7] and [5], and show a clean
O(n2) running time including data structure manipula-
tion. Along the way, we abstract a general data struc-
ture problem called union pair-find; this differs from
the classical union-find in that it maintains disjoint edge
sets, which may not be vertex-disjoint. To the best of

∗Department of Computer Science, UMass Amherst,
alee@cs.umass.edu, ltheran@cs.umass.edu

†Department of Computer Science, Smith College,
streinu@cs.smith.edu

‡Research partially funded by NSF grant CCR-0310661.

(a) (b)

Figure 1: (a) Generic minimally rigid body-hinge-and-
bar framework in 3d: four rigid bodies joined along
three hinges and three bars. (b) The corresponding
graph decomposes into 6 edge-disjoint spanning trees.

our knowledge, the need for such a data structure has
not been previously identified.

1.1 Preliminaries

We call a multi-graph on n vertices (k, l)-sparse if every
subset of n′ ≤ n vertices spans at most kn′ − l edges,
0 ≤ l < 2k; this hereditary property was first identified
and shown to be matroidal by White and Whiteley[10].
A multi-graph is a k-arborescence if it is the union of k
edge-disjoint spanning trees and a (k, a)-arborescence if
the addition of any a edges results in a k-arborescence.
When 0 ≤ a < k, Haas[3] proved equivalence of (k, a)-
arborescences with (k, k + a)-sparse graphs. In [7], we
show that the (k, l)-pebble games precisely characterize
(k, l)-sparse graphs.

A body-and-bar framework is a structure built from
n rigid bodies connected by rigid bars placed generi-
cally; it induces a graph, with a vertex associated to
each body and an edge to each bar. A remarkable the-
orem of Tay [9] states that the structure is (generically)
rigid in dimension d if and only if the associated graph
is a k-arborescence, for k =

(
d+1
2

)
. See Figure 1 for an

example of a 3d body-and-bar framework and its corre-
sponding graph decomposable into 6 edge-disjoint span-
ning trees1. Recski’s Theorem [8] states that a graph is
Laman if and only if it is a (2, 1)-arborescence. These
geometric problems motivate our interest in the purely
combinatorial (k, l)-arborescences.

If bars are removed from a rigid structure (and edges
from the corresponding graph), the structure becomes
flexible. Parts may still be connected together in a rigid
fashion; maximal such substructures form rigid com-

1Here we use the observation that hinges are equivalent to 5
bars [9].

1

(a) (b)

Figure 2: Rigid components of (a) a Laman graph and
(b) a 3-arborescence.

ponents and correspond to maximal sub-arborescences.
See Figure 2 for examples of (2, 1)- (Laman) and 3-
arborescence components.

We identify four fundamental problems on graph
rigidity. The Decision problem asks if G is minimally
rigid. The Extraction problem asks for a maximal,
minimally rigid subgraph of G. When weights are given
for the edges of G, the Optimization problem asks for
the maximum weight, minimally rigid subgraph of G.
Given a graph with some flexibility, the Components
problem asks for G’s maximal rigid subgraphs, or com-
ponents.

The pebble game. The algorithm maintains, as an
additional data structure, a directed graph with peb-
bles placed on its vertices, on which the game is played.
The edges of the input graph are considered in an arbi-
trary order, with each edge inserted into the additional
data structure if and only if the resulting graph is (k, l)-
sparse. An edge is rejected exactly when both endpoints
lie in a common component; otherwise, it is inserted,
and several existing components may combine to form
a new one.

The correctness of this algorithm relies on a structure
theorem in [7] which states that components are edge-
disjoint, but may intersect in at most 1 vertex. For k-
arborescences, components are vertex-disjoint, leading
to a simple marking scheme[7] for component mainte-
nance. However, in the general case, vertices may be-
long to more than one component, raising the question
of whether the rejection test can be performed in O(1)
time. Efficient component maintenance requires addi-
tional data structures, and is the topic of this paper.

1.2 Related work

Gabow and Westermann study k-arborescences using
matroid sum algorithms in [2], achieving O(n3/2) time.
Their techniques can also be applied Laman graphs;
however, the running time increases to O(n2).

The pebble game algorithm for Laman graphs was de-
vised by Jacobs and Hendrickson[5] as an elegant, easy
to implement alternative to a previous algorithm of Hen-
drickson [4], based on bipartite matchings, and is the
basis of the family of pebble games in [7]. While [5] de-

scribes the complete algorithm, it does not provide all
correctness proofs. These are given in a recent paper
by Berg and Jordan[1], where the only missing details
pertain to the data structure needed to maintain the
components. The vertex marking scheme employed in
[4] (not fully analyzed there) is a special case of the
approach we present in Section 3.

1.3 Union pair-find

We formally present the data structure necessary for
maintaining the disjoint edge sets corresponding to
components. The data structure must support a union
operation as well as a pair-find query that determines
if two vertices are spanned by a common component.
This is a different problem from the classical union-find
on disjoint sets and is presented here as union pair-find.

Union pair-find
Input:
• Set V = [1..n] of n elements
• Set E ⊆ {{u, v}|u, v ∈ V }, where m = |E|

Requirements:
Dynamically maintain disjoint subsets E1, . . . , El of E,
supporting the following operations:
• union(Ei, Ej) unions sets Ei and Ej and returns

the result
• find(v) returns a list of Ei such that v ∈ Ci, where

Ci = {x ∈ V |∃y ∈ V such that {x, y} ∈ Ei}.
• pair-find(u, v) returns true if there exists Ei

with u, v ∈ Ci; creates and returns a new El+1 =
{{u, v}} otherwise.

In our context (including rigidity applications), V and
E are the sets of vertices and edges, respectively, of a
(k, l)-sparse graph. Because components are induced
subgraphs on a set of vertices, we refer to Ci as a com-
ponent with edge set Ei.

2 Bounded union pair-find

The structure theorem from [7] states that components
of (k, l)-arborescences may pairwise intersect in at most
one vertex; thus, we first consider a restricted version of
union pair-find, which we refer to as bounded union pair-
find. Formally, the Bounded property requires |Ci ∩
Cj | ≤ 1, for all Ci 6= Cj .

For the bounded union pair-find problem, we achieve
O(1) for each pair-find operation and O(m2 + n2)
total time for all union operations. This will imply
an O(n2) running time for all four fundamental pebble
game problems, including the Extraction and Com-
ponents problems on a graph with potentially O(n2)
edges.

We now describe the data structures used; also see
Figure 3. Elements in V are stored in vector VV, indexed
by value; each element has a doubly-linked list pointing

2

Figure 3: A representation of the data structures VV,
CL, EL and VM. For clarity, only the pointers from EL to
CL are included; the actual linked lists for each Ei are
omitted. Dashed lines indicate pointers from VV to EL.

to the edge sets of its spanning components. The edge
sets E1, E2, . . . are maintained in linked list EL; in ad-
dition, each Ei has a pointer to the corresponding Ci.
Each Ci, stored in linked list CL, is a linked list pointing
to spanned elements; the pointer for spanned element v
points to the entry in VV[v]’s linked list for Ei (see Fig-
ure 3). Finally, VM is an n× n matrix, whose rows and
columns are indexed by the elements in V . VM[u][v] =
1 if and only if element u and element v are spanned by
some common component. Initially, all entries are set
to 0.

Supporting union, find and pair-find operations.
For a union(Ei, Ej) operation, we must update all data
structures. Since EL stores each edge set as a linked list,
we simply update the pointers between the last element
of Ei and the first element of Ej ; Ej ’s entry in EL is
removed. Maintenance of VV, CL and VM is slightly more
complicated. First, a marking stage is performed, in
which elements of Ci are marked. Updating VM is now
accomplished by changing entries of pairs vi ∈ Ci and
vj ∈ Cj , where vj is unmarked, from 0 to 1. Finally, we
update CL by first walking down Cj . Entries of marked
Cj elements are removed, as are the corresponding en-
tries in VV; entries of unmarked elements are left in Cj ,
but corresponding pointer entries in VV are updated to
point at Ei. The final step updates the last element of
Ci and first element of Cj to point to each other; the
linked list CL is updated to remove Cj ’s entry.

The find(v) operation simply returns the list of edge
sets pointed to by v’s entry in VV.

A pair-find(u, v) operation starts with a simple
lookup of matrix VM. If the entry is 1, true is returned.
Otherwise, a new singleton edge set is formed from
{u, v}; this requires additional entries to EL and CL and
simple updates to VV.

Time complexity analyis. We analyze the time com-
plexity for the union operation. EL is maintained in
O(1) as it is a simple update of pointers to merge the
corresponding linked lists. Updating CL and VV can be

done in O(m) time. The marking stage is a simple pass
over one element of CL; this requires O(m) time. Merg-
ing and updating CL and VV can also be done in O(m)
time by pointer updates.

As a consequence of the Bounded property, two ver-
tices can be in at most one common component. Be-
cause the marking stage removes the one vertex common
to Ci and Cj (if such a vertex exists), this implies that
entries of VM are accessed only when a value is changed
from 0 to 1. Thus, the time for updating VM over the
lifetime of all union operations is O(n2). In the worst
case, there are Θ(m) union operations; then the total
time is O(m2 + n2).

The find operation simply returns an entry from VV
and can be performed in output-sensitive O(t) time,
where t is the number of components spanning the query
element.

Since the pair-find operation is a simple lookup in
VM, the time for one such operation is O(1). Note that
creation of a new edge set and corresponding component
can easily be done in O(1).
Space complexity analysis. There is a 1-1 corre-
spondence between entries in the linked lists of VV and
entries in the linked lists of CL. Since the edge sets are
disjoint and CL maintains lists of vertices spanned by
each edge set, the total size of these lists can be at most
twice the size of E. Thus, the total size of CL is O(m);
then, the total size of VV is also O(m). Finally, since VM
is an n×n matrix, its size is O(n2) . The total space of
this data structure, then, is O(n2 + m) = O(n2).
Pebble game analysis. Given a graph with e edges,
the pebble game must maintain a dynamic set of suc-
cessfully inserted edges, i.e., edges of a (k, l)-sparse
graph. Since a (k, l)-sparse graph has O(n) edges, the
union pair-find maintains m = O(n) edges; this im-
plies O(n2) total time for union operations. Since
a pair-find operation is performed for each of the
e = O(n2) edges in the input graph, the total time for
pair-find operations is O(n2) as well.

3 Reducing the space complexity

In this section, we present a compact approach that re-
moves the Bounded restriction and uses only O(m+n)
space. In the worst case, the compact implementation
requires time Θ(m) for each pair-find operation; if we
require a specific ordering on Ω(n2) pair-find queries,
we retain an amortized time of O(1) for each query. The
running time of union remains unchanged.
Compact data structures and space complexity.
The compact implementation removes CL and replaces
VM with a value LV and a vector MV indexed by V . LV rep-
resents the left operand of the most recent pair-find
operation; MV maintains the vth row of VM. The space
complexity is reduced to O(n + m).

3

Supporting union, find and pair-find operations.
For a union(Ei,Ej) operation, when LV is spanned by
the resulting set, updating MV is accomplished by a sin-
gle pass over the new set. A pair-find(u,v) first per-
forms a check to determine if LV = u. If so, we return
true when MV[u] = 1 and a new component otherwise.
If LV 6= u, we update MV by walking over EL, then answer
the query.

Time complexity. The running times of union and
find remain unchanged.

We call a pair-find(u,v) query a miss when LV 6= u.
It is straightforward to see that the running time of
pair-find is O(m) for a miss and O(1) otherwise. It
follows that, for a sequence of p pair-find queries with
s misses, the total running time is O(ms + (p − s)) =
O(ms+p). When the pair-finds have O(n) misses, the
total cost becomes O(mn + p); consider, for instance,
restricting the queries to be ordered by left operand.

Pebble game analysis. The analysis on the union
operations remains unchanged. On an input graph with
e edges, we can satisfy the restriction of O(n) misses by
attempting to insert the edges in an order corresponding
to breadth-first exploration. Recall that, for the pebble
game, the inserted edges form a (k, l)-sparse graph with
O(n) edges, resulting in a union pair-find data structure
with m = O(n); then the total cost for the pair-find
queries is O(n2).

4 Conclusion

We have presented a new data structure problem
called union pair-find. Motivated by achieving efficient
and simple algorithms for the Decision, Extraction,
Optimization and Components problems for rigid
graphs, union pair-find maintains disjoint edge sets cor-
responding to rigid components. While union opera-
tions of the disjoint sets must be supported, the appli-
cation requires efficient time complexity for pair-find
queries. Therefore, this paper proposes two approaches
to union pair-find which concentrate on the complexity
of pair-find.

Both approaches result in O(n2) time pebble games
for the Decision, Extraction and Components prob-
lems. While Section 3’s approach requires the queries
to be given by breadth first exploration, the matroidal
properties of rigid graphs[10] imply that this additional
requirement does not affect the correctness of the pebble
games. The Optimization problem can be solved by
the greedy algorithm, thus dictating an order on the
pair-find queries. Section 2’s approach is then re-
quired to achieve O(n2) complexity, as it is efficient for
any sequence of pair-find queries.

4.1 Open problems

The introduction of union pair-find and two approaches
for its solution leads to several interesting open prob-
lems. Section 2 gives a quadratic space solution to
the bounded version, while providing constant time
pair-find queries. The compact approach of Section
3 solves the general problem, but is only time efficient
when the ordering of pair-finds is flexible. Whether
a linear space, constant time pair-find solution exists
for the general union pair-find is an open problem.

For applications in rigidity, we have focused on effi-
cient pair-find queries at the expense of union op-
erations. If we relax the efficiency requirements for
pair-find, can we reduce the complexity for union op-
erations? What sort of tradeoff is there between the two
operations?

References

[1] A. R. Berg and T. Jordan. Algorithms for graph rigidity
and scene analysis. In G. D. Battista and U. Zwick, ed-
itors, ESA, volume 2832 of Lecture Notes in Computer
Science. Algorithms - ESA 2003, 11th Annual European
Symposium, Budapest,Hungary, Springer, 2003.

[2] H. Gabow and H. Westermann. Forests, frames, and
games: algorithms for matroid sums and applications.
In Proceedings of the twentieth annual ACM symposium
on Theory of computing, pages 407–421. ACM Press,
1988.

[3] R. Haas. Characterizations of arboricity of graphs. Ars
Combinatorica, 63:129–137, 2002.

[4] B. Hendrickson. The molecule problem: determining
conformation from pairwise distances. PhD thesis, Cor-
nell University, 1991.

[5] D. J. Jacobs and B. Hendrickson. An algorithm for two
dimensional rigidity percolation: The pebble game. J.
Comput. Phys., 137:346–365, 1997.

[6] D. J. Jacobs, L. A. Kuhn, and M. F. Thorpe. Flexible
and rigid regions in proteins. In Rigidity Theory and
Applications, pages 357–384. Kluwer Academic/Plenum
Publishing, NY., 1999.

[7] A. Lee and I. Streinu. Pebble game algorithms and
(k, l)-sparse graphs. Accepted to EuroComb ’05, 2005.

[8] A. Recski. A network theory approach to the rigidity of
skeletal structures II. Laman’s theorem and topological
formulae. Discrete Applied Math, 8:63, 1984.

[9] T.-S. Tay. Rigidity of multigraphs I: linking rigid bodies
in n-space. Journal of Combinatorial Theory Series, B
26:95–112, 1984.

[10] W. Whiteley. Some matroids from discrete applied
geometry. In J. O. J. Bonin and B. Servatius, editors,
Matroid Theory, volume 197 of Contemporary Mathe-
matics, pages 171–311. American Mathematical Soci-
ety, 1996.

4

