
k-Link Rectilinear Shortest Paths Among Rectilinear Obstacles in the Plane

Valentin Polishchuk∗ Joseph S. B. Mitchell†

Abstract

We present an algorithm for computing k-link rectilin-
ear shortest paths among rectilinear obstacles in the
plane. We extend the “continuous Dijkstra” paradigm
to store the link distance information associated with
each propagating “wavefront”. Our algorithm runs in
time O(kn log2 n) and space O(kn), where n is the num-
ber of vertices of the obstacles. Previous algorithms for
the problem had worst-case time complexity O(kn2).

Our algorithm builds a j-link shortest path map,
rooted at a given source s, for each j ≤ k. A short-
est path query from s to a query point t can then be
answered in time O(log n + j).

1 Introduction

We consider the bi-criteria rectilinear two-dimensional
shortest path problem: Determine a rectilinear path of
minimum (L1) length, having at most k links, from s
to t that avoids the interiors of a set of disjoint simple
rectilinear obstacles having a total of n vertices. The
bi-criteria rectilinear path problem naturally arises in
certain wire-routing applications in which one is inter-
ested in finding a shortest rectilinear path for a wire that
avoids a given set of components and is constrained to
have at most k links.

Related Work

Bi-criteria path problems have received considerable at-
tention in the computational geometry literature; see,
e.g., [10, 11, 13]. Many problems are known to be NP-
hard [1], but often only weakly so. For the special case of
two criteria consisting of length (e.g., L1 or L2) and link
distance, several polynomial-time algorithms are known
for basic geometric optimal paths. See [6] for a survey
specific to rectilinear paths and rectilinear obstacles, as
studied here.

It is challenging to compute Euclidean shortest paths
having at most k links, since there is no simple dis-

∗Department of Applied Mathematics and Statistics, Stony
Brook University, valentin.polishchuk@stonybrook.edu

†Department of Applied Mathematics and Statistics, Stony
Brook University, jsbm@ams.sunysb.edu. J. Mitchell is partially
supported by grant No. 2000160 from the U.S.-Israel Binational
Science Foundation, NASA Ames Research (NAG2-1620), the
National Science Foundation (CCR-0098172, ACI-0328930, CCF-
0431030), and Metron Aviation.

crete graph that is “path preserving” for optimal paths.
The special case of k-link paths in simple polygons and
some approximation algorithms for more general cases
are considered in [12].

In rectilinear polygonal domains, efficient algorithms
are known for the bi-criteria path problem that com-
bines rectilinear link distance and L1 length. One
can achieve worst-case time O(kn2) (more precisely,
O(k(m + n log n)), where m is a number of crossings in
an arrangement, and is worst-case Θ(n2)); see [6, 14].
More efficient algorithms, running in nearly linear time,
are known for optimal paths in a “combined metric”; see
[2, 15]1. Results are also known in higher dimensions for
optimal paths in a combined metric, if the obstacles are
given as a set of axis-parallel boxes [4].

Our results give an O(kn log2 n) time algorithm, im-
proving the O(kn2) bound by roughly a factor of n. We
construct a family of planar subdivisions (link-restricted
shortest path maps), one for each j = 1, . . . , k, which
gives a decomposition of the plane into cells according
to the combinatorial type of a j-link shortest rectilin-
ear path from the source s. For any query point t, the
length of a shortest j-link path from s to t is determined
by locating t in the jth map.

2 Overview of the Algorithm

We apply the “continuous Dijkstra” paradigm [7], which
has been applied successfully to solving many optimal
path problems in geometry. Since our new algorithm
is based on a variant of the continuous Dijkstra algo-
rithm of [9], we begin with a review of that method and
then describe the changes necessary to extend it to our
problem.

The algorithm considers the effects of sweeping an ad-
vancing “wavefront” from a source point s to all points
of free space F . (The wavefront at distance D is the
set of points p of F for which the shortest path length
from s to p is D.) In order to simulate the advancement

1Some of these nearly-linear time results are said to apply to
optimizing any nondecreasing function f(l, j) of the L1 length l
and the number of links j; however, we suspect there is a mis-
understanding, since one could seemingly apply this result to
the function f(l, j) that is l if j ≤ k and ∞ otherwise, giving
a nearly-linear time algorithm (independent of k) for the k-link
shortest rectilinear path. The algorithms are based on applying
Dijkstra’s algorithm in a single-criterion weighted graph, rather
than a dynamic program (e.g., Bellman-Ford) that searches for
shortest j-link paths.

1



of wavefronts correctly, the following information asso-
ciated with each segment qq′ of the wavefront is stored
in a priority queue (called the event queue):

(a). its orientation, which will always be either north-
west (NW), southwest (SW), southeast (SE) or north-
east (NE) in the case of the L1 metric;

(b). its endpoints q and q′, which are the positions of
the segment’s endpoints at the moment the segment is
first instantiated, before it starts being “dragged”;

(c). its left and right track rays — these are the rays
along which q and q′ must be dragged, and they may
be horizontal or vertical rays through free space or rays
containing obstacle edges;

(d). the stop points L and R of the left and right
track rays — these are the first obstacle points “hit” by
the left and right track rays. (If the track rays intersect
each other at point u before they hit obstacles, then L =
R = u, where u is the inside corner of the corresponding
segment dragging query.);

(e). its root r, which is an obstacle vertex that is
responsible for propagating the portion of the wavefront
to which the segment belongs;

(f). its contact list, which is the set of obstacle edges
that the dragged segment touches (including the obsta-
cle edges on which its endpoints may be sliding);

(g). its event position qeq
′
e, which is the next position

of the segment at which the contact list changes;
(h). its event point p, which is the point that is re-

sponsible for the change in the contact list when the
segment reaches its event position. The event point p
must lie on the boundary of an obstacle, and it will
either be a stop point or a vertex;

(i). the event distance, which is the distance from s
at which the event point is encountered by the segment.

The segments in the event queue are ordered accord-
ing to their event distances. The next event is the
dragged segment whose event distance is minimum and
is obtained by popping the queue. In the case of ties,
we can order the event distances by the lexicographic
ordering of the x- and y-coordinates of their roots.

Each obstacle vertex u has associated with it a sorted
list, the SE-hit list, RSE(u) = {r1,. . .,rN} of roots ri

of dragged segments that are southeast of u and are
such that the dragged segment has “hit” point u (i.e., u
has been an event point for a dragged segment rooted
at ri, and this event has already occurred). Similar
definitions apply to the hit lists RNE(u), RNW (u), and
RSW (u) of the roots of the segments which have hit u
from southwest, southeast and northeast respectively.
The total size of all lists is bounded above by O(n log n).

Also associated with each obstacle vertex u is a per-
manent label, d(u), which, at the conclusion of the al-
gorithm, gives the length `(s, u) of shortest path from s
to u. Initially, d(u) = +∞ for all u. We say that u
has been permanently labeled if d(u) < +∞. We say

that a non-vertex point x has been permanently la-
beled if it lies in the region swept out by some dragged
segment. Each vertex u also has a pointer, parent(u),
which, at the conclusion of the algorithm, points to the
parent of u in the shortest path tree SPT(s). Initially,
parent(u) =NIL.

There are three types of events:
(I). the event point p is one of the stop points;
(II). p is interior to the dragged segment in its event

position; and,
(III). p is a vertex encountered by an endpoint of the

dragged segment.
The event queue is updated at each event so as to sim-

ulate the wavefront propagation correctly. Determining
events in the continuous Dijkstra method involves an-
swering segment dragging queries of special forms; see [9]
for details.

Modifications to account for link distance. In order
to modify the above algorithm for the k-link path prob-
lem, we extend the continuous Dijkstra algorithm to
store the (rectilinear) link distance from s to any point u
on the wavefront. In particular, we distinguish between
s-u paths ending with a vertical link and s-u paths end-
ing with a horizontal link. To this end we associate with
each wavefront segment one or two additional segments:
a horizontal segment, called a v-source and/or a verti-
cal segment, called an h-source. With each v-source
v we store its link number, l.v, which is the link dis-
tance from s to v, and pointer to a predecessor h-source,
pred.v . Then the shortest (l.v + 1)-link s-u path with
last link vertical may go from s through pred.v to v and
then to u. We store similar information with each of
the h-sources. Refer to Figure 1.

Left track

Right track

¡
¡

¡
¡

¡
¡¾

6
v-source

h
-s

o
u
rc

e

q

root

Figure 1: The information associated with a wavefront
segment.

Each obstacle vertex u has now associated with it k
SE-hit lists. For j ∈ {1 . . . k}, the hit list jRSE(u) con-
tains the roots and sources of dragged segments that are
southeast of u and are such that the dragged segment
has “hit” point u and the link distance from s to the
source is less than j. (Clearly, 1RSE(u) ⊆ 2RSE(u) ⊆
· · · ⊆ kRSE(u), so we only store the corresponding set
differences). We similarly define hit lists for other hit
directions.

Initially, s is permanently labeled with 0. Four

2



dragged segments rooted at s are inserted along with
their distance labels into the event queue: NE, NW,
SW and SE segments with the tracks being horizontal
and vertical rays from s.

Events. The propagation of the wavefront involves do-
ing different things depending on whether the next event
is of Type I, II, or III and on whether or not the event
point p has already been permanently labeled. The
cases are illustrated in Figures 2, 3, 4 and 5 for a seg-
ment dragged northeast. Processing the events for the
segments propagating in other directions is similar. The
details of the events processing are mostly the same as
in [9]. It is important, though, to modify the clipping
of wavefronts in order that the only wavefronts that
are permitted to continue (and not be clipped appro-
priately) are those corresponding to Pareto-optimal so-
lution paths.

¡
¡

¡
¡

¡
¡

∼

¾

6

∼

v-source

∼

h
-s

o
u
r
c
e

q

p

¡
¡

¡
¡

¡
¡

∼ ∼

¾

6

v-source

∼

h
-s

o
u
r
c
e

Figure 2: Type I event.

Complexity of the algorithm. Since we are propagat-
ing up to k different wavefronts (corresponding to up
to k different link distances to the points on wavefronts),
the complexity of the algorithm in [9] goes up by a factor
of k and becomes O(kn log2 n).

The proof of correctness is based on an induction ar-
gument, establishing that each point t reached (swept
over) by the ith event (with associated L1 distance di)
have been reached by a dragged segment correspond-
ing to each of the link distances j = dL(s, t), . . . , l(t),
where dL(s, t) is the rectilinear link distance from s to
t and l(t) is the (maximum) rectilinear link length of a
shortest L1 path from s to t.

¡
¡

¡
¡

¡
¡

∼

∼

∼ ∼

∼

∼

¾

6

v-source

h
-s

o
u
r
c
e

q

p

¡
¡¡

¡
¡¡

∼

∼

∼ ∼

∼

∼

¾

¾

6

6

v-sources

h
-s

o
u
r
c
e
s

Figure 3: Type II event.

¡
¡

¡
¡

¡
¡

∼

¾

6

∼

v-source

∼

h
-s

o
u
r
c
e

q
p

¡
¡

¡
¡

¡
¡

∼

¾

6

∼

v-source

∼

h
-s

o
u
r
c
e

@
@
?
¾

q

p

Figure 4: Type III event.

3 Conclusion

We expect that our results can be extended and im-
proved. First, we expect that our method applies

3



¡
¡

¡
¡

¡
¡¾

6
v-source

h
-s

o
u
r
c
e

q

p

¡
¡

¡
¡

¡
¡

¡¡

6

v-source

¡
¡

¡
¡

¡
¡

6

v-source

¾

h
-s

o
u
r
c
e

q

p

¡¡

Figure 5: Another Type III event.

to computing rectilinear paths among general (non-
rectilinear) polygonal obstacles. Also, it should be pos-
sible to reduce one factor of log n from the time com-
plexity by applying a more careful accounting scheme,
which has led to continuous Dijkstra algorithms with
complexity O(n log n) for L1 shortest paths among ob-
stacles [5, 8]. Further, by applying the algorithm to
multiple fixed orientations of path links, and possibly
to weighted subdivisions, one could address more gen-
eral versions of the k-link shortest path problem, as has
been recently studied in [3].

References

[1] E. M. Arkin, J. S. B. Mitchell, and C. D. Piatko. Bicri-
teria shortest path problems in the plane. In Proc. 3rd
Canad. Conf. Comput. Geom., pages 153–156, 1991.

[2] D. Z. Chen, O. Daescu, and K. S. Klenk. On geomet-
ric path query problems. Internat. J. Comput. Geom.
Appl., 11(6):617–645, 2001.

[3] O. Daescu, J. S. Mitchell, S. Ntafos, J. D. Palmer, and
C. K. Yap. k-link shortest paths in weighted subdivi-
sions. In Proc. 9th Workshop Algorithms Data Struct.,
page to appear, 2005.

[4] M. de Berg, M. van Kreveld, B. J. Nilsson, and M. H.
Overmars. Shortest path queries in rectilinear worlds.
Internat. J. Comput. Geom. Appl., 2(3):287–309, 1992.

[5] J. Hershberger and S. Suri. An optimal algorithm for
Euclidean shortest paths in the plane. SIAM J. Com-
put., 28:2215–2256, 1999.

[6] D. T. Lee, C. D. Yang, and C. K. Wong. Rectilin-
ear paths among rectilinear obstacles. Discrete Appl.
Math., 70:185–215, 1996.

[7] J. S. B. Mitchell. Planning shortest paths. Ph.D. thesis,
Stanford Univ., Stanford, CA, 1986.

[8] J. S. B. Mitchell. An optimal algorithm for shortest rec-
tilinear paths among obstacles. In Abstracts 1st Canad.
Conf. Comput. Geom., page 22, 1989.

[9] J. S. B. Mitchell. L1 shortest paths among polygonal
obstacles in the plane. Algorithmica, 8:55–88, 1992.

[10] J. S. B. Mitchell. Geometric shortest paths and network
optimization. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, pages 633–701.
Elsevier Science Publishers B.V. North-Holland, Ams-
terdam, 2000.

[11] J. S. B. Mitchell. Shortest paths and networks. In
J. E. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry (2nd Edition),
chapter 27, pages 607–641. Chapman & Hall/CRC,
Boca Raton, FL, 2004.

[12] J. S. B. Mitchell, C. Piatko, and E. M. Arkin. Com-
puting a shortest k-link path in a polygon. In Proc.
33rd Annu. IEEE Sympos. Found. Comput. Sci., pages
573–582, 1992.

[13] C. D. Piatko. Geometric Bicriteria Optimal Path Prob-
lems. Ph.D. thesis, Cornell University, 1993.

[14] C. D. Yang, D. T. Lee, and C. K. Wong. On bends and
lengths of rectilinear paths: a graph theoretic approach.
Internat. J. Comput. Geom. Appl., 2(1):61–74, 1992.

[15] C. D. Yang, D. T. Lee, and C. K. Wong. Rectilinear
paths problems among rectilinear obstacles revisited.
SIAM J. Comput., 24:457–472, 1995.

4


