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Abstract

The piercing problem seeks the minimum number of
points for a set of objects such that each object contains
at least one of the points. We present a polynomial-time
approximation scheme (PTAS) for the piercing problem
for a set of axis-parallel unit-height rectangles. We also
examine the problem in a dynamic setting and show how
to maintain a factor-2 approximation under insertions
in logarithmic amortized time, by solving an incremen-
tal version of the maximum independent set problem for
interval graphs.

1 Introduction

Given n objects in R% a piercing set is a set of points
such that each object contains at least one of the points
in the set. The minimum cardinality of a piercing set
is known as the piercing number. The problem of com-
puting the piercing number is analogous to the hitting
set problem [7] and is NP-hard even for the special case
where the objects are axis-aligned unit squares in R? [6].
(The piercing problem in this case is equivalent to cov-
ering a given set of points with the minimum number of
unit squares.) Focus is thus turned towards approxima-
tion algorithms. The general hitting-set problem allows
for a logarithmic approximation factor [3]; in this paper,
we are interested in obtaining better approximation re-
sults in geometric settings.

Hochbaum and Maass [9] gave a factor-(1 + €) algo-
rithm (a PTAS) for axis-aligned unit squares in R? run-
ning in n®0/<) time. The time bound was later im-
proved to n®(1/¢) by Feder and Greene [5] and Gonza-
lez [8]. We are interested in identifying larger classes
of objects that admit similar PTAS results. For in-
stance, Chan [2] recently provided a PTAS that runs in
n01/€) time for squares of possibly different sizes (and
more generally any collection of “fat” objects). See also
[4, 13] for earlier results on piercing. In this paper we
consider the case of axis-parallel unit-height rectangles
and present a new PTAS that solves the problem in
nO/e*) time.
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We also investigate the problem in a dynamic setting
where insertions of new rectangles are allowed. Katz et
al. considered the dynamic problem for 1-dimensional
intervals and provided an exact algorithm that can sup-
port both insertions and deletions in O(plogn) where
p denotes the piercing number [10]. Katz et al. also
gave a (1 + ¢)-approximation algorithm with a bet-
ter update time bound of O((1/€)logn). These re-
sults imply a factor-2 and factor-(2 + €) approxima-
tion algorithm for 2-dimensional unit-height rectangles
with O(plogn) and O((1/€) logn) update times respec-
tively. We show that in the insertion-only setting, the
amortized update time for the 1-dimensional exact al-
gorithm and the 2-dimensional factor-2 algorithm can
be reduced from O(plogn) to O(logn). Our dynamic
1-dimensional result might be of independent interest,
as the piercing problem for intervals is equivalent to
finding maximum independent sets in interval graphs
(an often-studied “activity selection” problem [3]). See
also [11] for another logarithmic-time result for the 1-
dimensional problem for a special kind of “endpoint ex-
change” updates.

2 A Factor-(1 + ¢) Algorithm

Lemma 1 For a set of n unit-height azis-parallel rect-
angles, sorted according to their right (or left) bound-
aries, a factor-2 approximation of its piercing number
can be computed in O(n) time.

Proof. For each horizontal grid line y = 7, the pierc-
ing number of the intervals formed by rectangles inter-
secting that line can be computed in linear time, by
a standard greedy algorithm that examines the right
endpoints from left to right (see the next section for de-
tails). The approximation is obtained by adding all the
piercing numbers computed. Since each rectangle can
be intersected by at most two of the lines, the overall
running time is linear.

Let P(®) be the set of piercing points computed for the
line y = 7. Let Z be a minimum set of piercing points
for the entire set of rectangles. Let Z() be the subset
of all points in Z inside the strip 7 — 1 <y < ¢. Since
rectangles intersecting y = ¢ are contained in the strip
i—1<y<i+1, |[PO]<|Z20)|4|z0+Y|. Therefore,
3, |PW] < 2]7|, as desired. O

Lemma 2 For constant integers k, k' > 1, if a set of
n unit-height axis-parallel rectangles can be stabbed by



k horizontal lines, a factor-(l—i— k—l,) approximation of
the piercing number can be computed in O(n***'+2k=1)

time.

Proof. Let R be the given set of rectangles. Let
ai...a,—1 be the z-coordinates of the corners of the
rectangles, sorted in increasing order, with a,, = oo.
The following algorithm computes a piercing set P of

R:
1. Set P« B and ¢ + —cc.
2. Fori < 1to mdo

3. Let R; be the subset of all rectangles inter-
sected by the vertical line z = a;.

4. Also let R} be the subset of all rectangles lying
entirely inside the strip £ < z < a;. Denote
this strip by o;.

5. Compute a lower bound on the piercing num-
ber of R} using Lemma 1. If the lower bound
is at least kk’, or i = m, then

6. compute the exact minimum piercing set
P; of R; by a 1-dimensional algorithm;

7. compute the exact minimum piercing set
P/ of R! by exhaustive search;

8. set P+ PUP;UP! and £ « a;.

Let Z be the set of values of ¢ for which steps 6—
8 are executed. The algorithm in effect partitions R
into subsets R; and R} (i € Z). Let Z be a minimum
piercing set of R. By assumption, |P;| < k for every 1,
with | Py, | = 0. Since the rectangles in R} are contained
in oy, |P/| < |Z N oy, implying that 37, |P/| < [|Z].
Since |P/| > kk' for all i € T except for i = m, we have
17| - 1 < 121 Thus,
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yielding the desired approximation factor.

Initial sorting takes O(nlogn) time. Step 3 takes lin-
ear time per iteration, for a total of O(n?). Step 6 takes
linear time per iteration. For the exhaustive search,
the maximum number of candidate piercing points (cor-
ner and intersection points) is O(|R}|?). The minimum
number of points to pierce R} (i € Z) can be at most
2kk'+k—1, because |R}| < 2kk’ for j ¢ T by Lemma 1,
and incrementing j may only increase | B[ by k. Check-
ing whether a given set of O(1) points is indeed a pierc-
ing set of S/ trivially takes O(|S}|) time. Therefore, step
7 takes O(|S}|***"+25=1) time for each i € Z, for a total
of O('n‘““kl"'%_l). O

Theorem 3 For a set of n axis-parallel unit height rect-
angles and a constant € > 0, a factor-(1+¢€) approzima-
tion of the piercing number can be computed in nO(1/e*)
time.

Proof. The approximation algorithm uses the idea of
shifting proposed by Hochbaum and Maass [9]:

1. Set k' «+ k « [3/¢€].
2. Fori+<0tok—1do

3. Let R(J) be the subset of all rectangles
stabbed by k consecutive horizontal lines y =

jk+ijk+i+ 1., G+ Dk+i— 1.

4. Find a piercing set P(+7) of each R(+) by
Lemma 2, in total time O(n* +2t-1)
nO(1/62)'

5. Let PO) =, P(h),

6. Return the set P with minimum cardinality among
pO p) pk-1)

Let Z denote the set of piercing points in an optimal
solution. For an integer ¢, let Z(*) denote the subset of
all points in 7 inside the strip t — 1 < y < t. Since rect-
angles in R("7) are contained in ZUk+)yzUk+i+l)y.. .y
7Z(+Dk+1) “and since Lemma 2 yields a (1+1/k)-factor
approximation, we have |P()] < (1 4 1/k)(|Z0%+9)| 4+
|ZUktit)| ... 4| Z(G+HDR+)]) | Therefore,
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(as the terms |ZU*+9)| need to be double-counted).
Thus,
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The approach can be extended to higher dimensions
for axis-aligned boxes where all side lengths are equal
to 1 except along one dimension.



3 An Incremental Factor-2 Algorithm

We now give a data structure that can maintain a factor-
2 approximation of the piercing number for unit-height
rectangles under insertions. By the method in Lemma 1,
it suffices to give an insertion-only data structure for the
exact 1-dimensional interval piercing problem.

Let T = {I,...,I,} be a set of n intervals with
I, = [lg, 7], sorted by their right endpoints rg. For
convenience, set Iy = [—o00, —o0] and I, = [00,0]. In
the static instance, a very simple greedy approach finds
the minimum piercing set: repeatedly print the leftmost
right endpoint and remove all intervals pierced by this
point. Notice that if ; and r; (i < j) are two consec-
utive piercing points chosen by the greedy algorithm,
then r; = ming {ry | {x > r;}. This motivates the follow-
ing definition (used also in previous work such as [11]):

Definition 4 Let NEXT(L;) = I; if r; = ming{ry |
lk > T’Z'}.

By forming a directed graph T with vertices ZU{ I, I }
and edges {(I;, I;) | NEXT(I;) = I;}, the piercing num-
ber thus corresponds to the length of the path from I
to I. Notice that T is acyclic with all vertices of out-
degree 1 (excluding Io,) and is thus a rooted tree.

To solve the dynamic piercing problem, we could
maintain 7' in a data structure for dynamic trees [14]
that supports path-length queries. However, the inser-
tion of a single interval can cause as many as 2(n) edge
changes to T' in the worst case. Thus, we will maintain
a modified tree T".

Before describing T, we first need two subroutines.

(a) Given any I;, compute NEXT(I;):

We can determine ming {7 | [z > r;} in logarith-
mic time by using a priority search tree [12] to store
the intervals Ii, ordered by lg, with priorities de-
fined by rg; this data structure can be maintained
in logarithmic time per update and can report the
minimum priority among all elements in any query
range.

(b) Given any I;, identify all I;’s such that
NEXT(I;) = I; (the “reverse” of (a)):
Observe that NEXT(L;) = I; iff [; > r; and (Vk,
lp > r = Tj < T’k), iff lj > r; and (Vk, r; > Tk
= 1 < ’PZ'), iff lj > > maxk{lk | ry < Tj}.
All such I;’s thus appear in consecutive order (as
intervals are sorted by right endpoints), and we can
determine the first and last of these intervals in
logarithmic time by another priority search tree,
this time, with the intervals I}, ordered by rg, and
priorities defined by .

Define a block to be a maximal set of intervals with
a common NEXT value. Blocks are obviously disjoint.

The crucial observation, as shown in (b) above, is that
elements within a block are consecutive. We form the
new graph 7" as follows. Vertices are intervals. We add
an edge of weight 0 between every pair of consecutive
vertices in the same block. We place an edge of weight
1 from I; to NEXT(I;) only when i is the last vertex of
a block. Clearly, T is still a tree, and distances in T’
are identical to distances in T, so the piercing number
corresponds to the total weight of the path from I to
I in T,

Sleator and Tarjan’s original dynamic tree struc-
ture [14] supports edge insertions and deletions in T’
(links and cuts) and certain queries (maximizing edge
costs along a path) in logarithmic amortized time. For
our particular type of queries (summing edge weights
along a path), we can use Alstrup et al.’s top-tree imple-
mentation [1]. Insertion of a new interval I can trigger
various changes in T’. There is at most one insertion
of weight-1 edges leaving I (computable by (a)) and at
most one insertion of weight-1 edges entering I (com-
putable by (b)). In addition, there is at most one dele-
tion of weight-0 edges caused by splitting of a block,
as well as insertions of weight-0 edges and deletions of
weight-1 edges caused by merging of blocks. In each
interval insertion, the number of splits is bounded by a
constant but the number of merges may be large. How-
ever, since the total number of merges is bounded by
n plus the number of splits, the amortized number of
edge changes is only O(1). Furthermore, the location
of the merges and splits can be identified in logarithmic
time by having an extra balanced search tree holding
the blocks’ boundaries. The overall amortized time to
maintain 7" is thus O(logn). We conclude that:

Theorem 5 In an insertion-only scenario, the pierc-
ing number of a set of n intervals can be maintained in
O(logn) amortized time per insertion.

Corollary 6 In an insertion-only scenario, a factor-
2 approzimation of the piercing number of a set of n
unit-height azxis-parallel rectangles can be maintained in
O(logn) amortized time per insertion.

4 Open Questions

Our work raises two interesting questions:

1. Can we design an n®(/¢)-time PTAS for axis-
parallel unit-height rectangles? This can be an-
swered if there is a polynomial-time exact algo-
rithm for the special case considered in Lemma 2
(where the rectangles are stabbed by a constant
number of horizontal lines).

2. Can the fully dynamic interval piercing problem be
solved in O(logo(l) n) time per insertion and dele-
tion? Obtaining a near-O(y/n) fully dynamic solu-
tion is not difficult (by partitioning the endpoints



into 4/n groups and storing each group in a static
data structure).
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