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Abstract

A plane pseudograph is a plane graph allowing both
loops and multiple edges. The encoding technique
we propose belongs to a class of compression methods
based on a deterministic graph traversal, which is en-
coded as a bit string. Arrays of vertices and edges
stored in the order defined by this traversal, together
with the bit string, allow the retrieval of the original
graph. Within this framework, the most general meth-
ods to encode plane graphs allow obtaining the cyclic
ordering of the edges incident to each vertex. Pro-
vided any directed edge incident to the infinite face is
specified, the plane graph is uniquely defined. How-
ever, this information may not be sufficient to re-create
the faces of the original graph when loops are allowed.
In this paper, we analyse what information must be
encoded in the bit string to retrieve correctly all in-
cidences among the vertices, edges and faces of any
plane pseudograph. Let G be a connected plane pseu-
dograph with V vertices, E edges and F faces. The
most common representation of G in computational ge-
ometry is the half-edge data structure, which requires
2E log V +(V +4E +F ) log(2E)+2E log F bits to store
the connectivity of the graph. The compression method
proposed in this paper encodes the graph connectivity
in 4E + 1 bits, and allows encoding-decoding the data
structure representing the graph in O(E) time.

1 Introduction

Plane pseudographs are widely employed to model 2D
geographic maps in vector format, dual graphs of com-
munication or stream networks, etc. Web applications
in the context of GIS require the transmission of these
usually huge plane graphs, what under current trans-
mission rates makes compression techniques essential.

Encoding methods have been broadly studied for tri-
angulations [2, 3, 7, 11, 16, 17], and compression ratios
achieving the theoretically optimal rate of log2

256
27 ≈

3.245 bits per vertex [19] have been obtained [14]. Tech-
niques to encode general polygonal meshes have also
been studied [6, 12, 8, 10]. Provided a plane pseudo-
graph could be triangulated or polygonated, the previ-
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ously cited techniques could be applied to compress it.
This solution, besides increasing both storage and time
complexity, is not valid for certain classes of graphs (e.g.,
graphs containing loops or multiple edges).

Research has also been undertaken in the field of dis-
crete mathematics and information theory to encode
planar graphs. In [15], it is shown that general unla-
beled graphs can be encoded by

(
V
2

)−V log2V + O(V )
bits in O(V ) time. Several schemes to succinctly rep-
resent plane graphs use particular spanning trees based
on Schnyder trees [4, 1]. An encoding for graphs with
information-theoretically minimum number of bits in
O(V log V ) time is proposed in [5]. Lu [13] improves
the previous time complexity to O(V ). The drawback
of these methods is the constant hidden in the big-O
notation. Turán proposed in [18] an scheme which uses
4E bits to encode a plane graph. In [9] this bit count
was reduced to 3.58E, at the cost of not encoding the
faces in the plane graph. The compression technique we
propose uses the deterministic graph traversal proposed
by Turán [18], which will be reviewed next.

Let G be a plane graph and T be a rooted span-
ning tree of G with a distinguished edge incident to its
root (see Figure 1). Graph G − T results from remov-
ing the edges of T from G. Assume each edge of T is
decomposed into two companion half-edges of opposite
directions, such that the face a half-edge bounds is to
its right. A half-edge is directed from its origin ver-
tex to its destination vertex. Let us call the half-edge
of the distinguished edge of T which has its origin at
the root v0 of T the first half-edge of G. Consider a
traversal of consecutive half-edges of T starting at the
first half-edge. The origin vertices of the consecutive
half-edges form a cyclic sequence of possibly repeated
vertices. In the graph of Figure 1 such sequence would
be v0v1v2v1v0v3v4v3v5v3. Let us call current half-edge
to the half-edge indicating the position of the traversal,
denoted ec. All edges e of G − T incident to the origin
of ec, and placed between ec and the half-edge previous
to ec are traversed in counterclockwise sense. Each time
one edge e of G − T appears, a parentheses symbol is
interleaved in the cyclic sequence of vertices. The first
time e is reached, an open-bracket ( will be added to
the sequence. The second time, we will insert a close-
bracket ) symbol. From the cyclic sequence of vertices,
tree T can be retrieved. Turán proved [18] that the
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position of edges belonging to G − T can be obtained
from the cyclic sequence enriched with the parenthesis
symbols (see Figure 1). When a ( symbol is found, an
edge e belonging to G − T has been reached the first
time. Thus, one of the vertices v incident to e can be
retrieved. All edges incident to v are retrieved in coun-
terclockwise order. Reaching a ) means that the other
vertex incident to the last edge affected by a ( has been
reached. By encoding the cyclic sequence of vertices
with + and − symbols, depending on whether each tra-
versed vertex is closer or further from the root, 4 bits
per edge are required to encode G.
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Figure 1: The edges of a vertex spanning tree T of
plane graph G have been depicted with bold lines.
The root of T is v0, and e2 is chosen as the distin-
guished edge. Deterministic traversal of G is encoded
as sequence ((v0v1)(v2v1v0)v3v4v3)v5v3, or equivalently
((++)(− − +) + −+) − −. The arrays of vertices and
edges are v0v1v2v3v4v5 and e0e1e2e3e4e5e6e7 respec-
tively.

The theoretical aspect of encoding a plane pseudo-
graph in as less number of bits as possible has its prac-
tical counterpart in the efficient implementation of al-
gorithms to encode and decode the data structure used
to store the graph. A measure of the efficiency of a data
structure is the capability of traversal according to any
criterion. Usual guides are traversal of faces or edges
around a vertex and traversal of edges around a face.

The FE data structure [21] (usually known as half-
edge data structure) is the most common computational
representation of a plane pseudograph. Each edge is de-
composed into two companions half-edges, one for each
possible direction, such that the face they bound is to
their right (or to the left). The specification of the FE
data structure follows:
• for each vertex v, its coordinates, and one of the

half-edges with origin at v;
• for each half-edge e (see Figure 2), its origin ver-

tex vo; its incident face f ; its companion half-edge
e′, the half-edge eprec coming into its origin vertex,
and the half-edge epost outgoing its destination ver-
tex (3 half-edges in total);

• for each connected component belonging to the
boundary of a face, called a loop, a reference to
one of its half-edges (or the vertex in case there is
no edge); and a reference to next loop inside the
face;

• for each face f , its outer loop.

The half-edge data structure is sufficient [21], i.e. it al-
lows the retrieval of all incidences among the vertices,
edges and faces of the plane pseudograph it represents.
Besides, all entities incident to a given vertex, edge or
face can be retrieved in time linear in the output size.
Disregarding the geometry of vertices and edges, this
data structure requires 2E references to vertices, 2E ref-
erences to faces, and V +6E+F references to half-edges.
However, by storing each pair of companion half-edges
in consecutive locations, only V + 4E + F references to
half-edges must be stored. Hence, a total amount of
V log(2E)+E(2 log V +4 log(2E)+2 log F )+F log(2E)
bits are required to store the connectivity of a connected
plane pseudograph using this data structure.

e′

e

f

vo

epost eprec

Figure 2: In the half-edge data structure, each half-edge
e stores references to its origin vertex v0; incident face
f ; half-edge eprec previous to it in f ; half-edge epost

posterior to it in f ; and its companion half-edge e′.

Turán stated in [18] that his encoding technique ad-
mits an extension to encode connected plane pseudo-
graphs in a number of bits linear in the number of
edges, and that coding and decoding require polyno-
mial time. In the next section, we provide an encoding
scheme which performs both encoding and decoding in
linear time and that with only one more bit than Turán’s
proposal for simple plane graphs allows the presence of
loops and multiple edges.

2 Encoding Algorithm

Let G be a plane pseudograph, and T be a vertex span-
ning tree of G. Assume T contains some edge. Consider
a sufficiently small disk centered in the root v0 of T
which does not contain completely any edge inside it. In
Figure 3 (a) we have depicted disk D centered in v0 with
a dashed line. All edges with origin v0 which do not be-
long to T will be traversed from the half-edge previous
to the first half-edge until the first half-edge in counter-
clockwise order as they are found when traversing the
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boundary of the disk. After that, the first half-edge
will be traversed, and this process is repeated until the
traversal of all the half-edges in T has finished. Dur-
ing this traversal, two arrays will be created. In the
array of vertices, they are stored in the order in which
they are traversed, i.e., as in a preorder traversal of T .
Edges of G are stored in the array of edges when they
are first found. In Figure 3 (a), the array of vertices
would be v0v1, and the array of edges e1e2e0. During
the decoding process, a stack of edges in G −T is main-
tained. Each time an edge in G − T is found the first
time, it is added to the stack. When an edge in G−T is
reached the second time, it will identified with the top
most half-edge in the stack.

It can be easily proved that Turán’s encoding adapted
to plane pseudographs provides a correct cyclic ordering
of the edges of G around each vertex. However, for the
decoding algorithm retrieving the faces of G correctly,
the half-edges bounding the infinite face must be known.
If loops are not allowed, it suffices to know one of the
half-edges incident to the infinite face. However, for gen-
eral plane pseudographs this is not sufficient. In Figure
3, two different pseudographs with the same cyclic or-
dering of edges around v0 are shown. In both of them,
the half-edge of e2 which determines a counterclockwise
loop bounds the infinite face.

Theorem 1 A connected plane pseudograph G can be
encoded using 4E + 1 bits, where E is the number of
edges in G. Both encoding and decoding require O(E)
time.

Proof. Assume there are two or more vertices of G in-
cident to the infinite face, denoted f∞. In this case, at
least a half-edge which is not a loop exists bounding f∞.
If one of such half-edges is chosen as the first half-edge e
of G, the half-edge eprec previous to e is uniquely defined
from the cyclic ordering of edges around the origin of e,
and eprec will also bound f∞. This way, moving from
each edge to its previous one all the half-edges bounding
f∞ can be retrieved.

If only one vertex v0 of G is incident to f∞, this im-
plies that a set of loops incident to v0 exist which contain
all edges of any vertex spanning tree T (see Figure 3). In
this case, given a half-edge e bounding f∞, and given
the cyclic sequence of edges around v0, the half-edge
eprec previous to e is not uniquely defined. The bound-
ary of disk D centered in v0 contains two occurrences of
e, and eprec must be specified. Two possibilities arise:
either eprev = e or eprev 6= e. In the first case, e is the
only half-edge bounding f∞. In the second case, e and
eprec uniquely determine the boundary of f∞.

There is a total of three possible cases which the bit
string must encode to correctly retrieve the infinite face
of G, namely (i) a non-loop edge exists bounding f∞;
(ii) there is one and only one loop bounding f∞; (iii)

face f∞ is only bounded by either two or more than
two loops. The traversal of G can start at any edge of
G. Taking this into account, cases (i) and (iii) can be
reduced to one only case: there are two or more than
two half-edges bounding f∞. The traversal should then
start at an edge (or occurrence of a loop) bounding f∞
such that the edge posterior to it in counterclockwise
sense also bounds f∞. Provided there is one and only
one loop bounding f∞, the traversal will start in it.

The encoding process requires just a traversal of G. If
G is represented by a half-edge data structure [21], the
traversal requires time linear in the number of edges.

Given the arrays of vertices and edges obtained in the
encoding process, together with the encoding bit string
of length 4E +1, let us now specify how to build a half-
edge data structure representing G in linear time. Ar-
rays of vertices, half-edges, and faces must be created,
each of which stores references to other entities. Inci-
dences among vertices and half-edges can be retrieved in
time linear in the number of edges, as well as the assign-
ment of each half-edge to its companion half-edge, by
reading the part of the bit string containing symbols +-
(). To establish the incidences of faces with half-edges,
each half-edge record must be traversed. The first el-
ement in the bit strings allows the correct retrieval of
f∞, what uniquely defines the rest of faces.

¤
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Figure 3: Two different pseudographs with the same
cyclic ordering of edges around v0 and the same half-
edge (e2 oriented counterclockwise) bounding the infi-
nite face.

Assume now the faces in the plane graph are allowed
to have holes, i.e. connectedness constraint is removed.
The edges of G−T are in one to one correspondence with
the faces of G. Thus, by adding 1 bit after each edge of
G − T is first reached we will indicate whether the cor-
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responding face has some connected component inside
or not. To indicate how many connected components C
inside a face there are, C + 1 bits are required. Finally,
an additional bit per connected component is required
to know whether the component (or loop in the FE data
structure terminology) is an isolated point. Assuming
there is only one connected subgraph bounding f∞, at
the end of the encoding of the connected subgraph a )
symbol is added to the bit sequence, and the encoding
of the next connected component follows.

3 Concluding Remarks

The encoding algorithm developed in this work encodes
the connectivity of a plane pseudograph as a bit se-
quence. This string, together with the arrays of vertices
and edges, allows the retrieval of the plane graph. Tech-
niques such as Huffman or arithmetic coding could be
applied to obtain better compresion ratios. Compress-
ing the geometry of vertices and edges is another topic
of research, out of the scope of this paper.

A problem of practical interest is the comparison of
the compression algorithm proposed in this paper with
other approaches to compactly represent plane pseudo-
graphs, as the multiresolution model developed in [20]
to manage plane graphs at different levels of detail.
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