
Faster approximation algorithms for
scheduling tasks with a choice of start times

Daya Gaur∗ Ramesh Krishnamurti†

Abstract

We consider the problem of determining the largest inde-
pendent set in a set of horizontal intervals, where two in-
tervals are defined to be independent if they are not stabbed
by any axis-parallel line. This problem arises naturally in
non-preemptive scheduling of tasks on uni-processors. We
study a Max SNP-hard restriction of the problem and give
a randomized and a deterministic approximation algorithm.
The deterministic algorithm is the first with performance
ratio strictly greater than1/2 to the best of our knowl-
edge.

Keywords: Approximation algorithms, Interval scheduling,
Non-preemptive scheduling on single processor, Job interval
selection problem.

1 Introduction

Given a set of horizontal intervals in 2D, define two inter-
vals to be independent if their projections do not overlap nei-
ther in the x-axis nor in the y-axis. The problem is to deter-
mine the largest independent set of intervals. This problem
has applications in the area of task scheduling. Letn be the
minimum number of horizontal lines that stab all the inter-
vals, andk be the maximum number of intervals that lie on
any horizontal line. Each horizontal lineh corresponds to a
task. Intervals (hi1, hi2, . . . , hij : j ≤ k) that lie onh cor-
respond to the possible slots when the task can be executed.
Note that the processing time of a task is variable, in that
it depends on the start time. A task needs to be scheduled
only once. The problem is to schedule maximum number
of tasks without preemption on a single processor. Equiv-
alently, determine the largest cardinality independent set of
intervals. This problem is also known as the interval schedul-
ing problem [7] and the job interval selection problem (JISP)
[2, 4]. The problem arises in the manufacturing of printed
circuit boards [8], in computation in real-time environments
[6], adaptive rate controlled scheduling for multimedia appli-
cations [9] and time constrained communication scheduling
[1].

∗Department of Math and Computer Science, University of Lethbridge,
Lethbridge, AB, Canada, T1K 3M4,gaur@cs.uleth.ca

†School of Computing Science, Simon Fraser University, Burnaby, BC,
Canada, V5A 1S6,ramesh@cs.sfu.ca

Keil [5] showed that the interval scheduling problem is NP-
complete even when each task can be scheduled in at most
three (k = 3) places. Spieksma and Crama [8] established
that the decision version of the problem is strongly NP-
complete even for the case whenk = 3, and the process-
ing times are either1 or 2, thereby improving the result of
Keil. Spieksma [7] showed that there does not exist a poly-
nomial time approximation scheme for the problem for all
k ≥ 2 unless P = NP. Spieksma [7] also gave an approxima-
tion algorithm with performance ratio1/2 for the problem,
and posed as an open question the design of approximation
algorithms with improved performance ratio. Chuzhoy, Os-
trovsky and Rabani [2] gave a randomized approximation al-
gorithm (based on a linear programming relaxation) with an
expected performance ratio of((e − 1)/e) − ε for the gen-
eral case; for the case whenk = 2 their bound is3/4 − ε.
The need to solve a linear program motivates us to design a
simpler and faster algorithm. In this paper we address this
question and for the case whenk = 2 we give a random-
ized approximation algorithm with a performance ratio of
0.5131057527 and a deterministic approximation algorithm
with a performance ratio of.5128269905. This deterministic
algorithm is the first with performance ratio strictly greater
than1/2 to the best of our knowledge. In the rest of the pa-
per, we assume there is no restriction on the processing times
andk = 2. Our assumption, stated in terms of intervals;
the lengths of the intervals are arbitrary and each horizontal
line intersects exactly two intervals. Max SNP-hardness of
the problem under consideration (denoted JISP-2) was estab-
lished by Spieksma [7]. We note that whenk = 2, Keil’s ob-
servation [5] can be used to determine whether all the tasks
can be scheduled inO(n) time (the problem reduces to 2-
SAT). When all the tasks cannot be scheduled using Keil’s
approach, it is natural to determine the maximum number of
tasks that can be scheduled.

We develop two simple and fast randomized approximation
algorithms for the JISP-2 problem that have performance ra-
tio strictly greater than 1/2. The second algorithm is deran-
domized using the method of conditional expectation [3]. To
the best of our knowledge the derandomized algorithm is the
first deterministic algorithm with performance ratio strictly
greater than 1/2. Furthermore, it should be noted that the
running times of our algorithms are considerably better than
the previous LP based approaches. A naive implementation
of the randomized algorithms have running timeO(n2 log n)
andO(n2). The deterministic algorithm has running time

1

O(n3).

2 Randomized Algorithm

In this section we demonstrate a0.5131057527 factor ran-
domized approximation algorithm for the optimization ver-
sion of the problem whenk = 2. Note that our algorithm
does not constrain the processing times.

Input is a setT = {l1, r1, l2, r2, . . . , ln, rn} of 2n intervals
where intervalsli, ri lie on horizontal liney = i. Denote
the set of left-intervals{l1, l2, . . . , ln} usingT l and the cor-
responding set of right-intervals labelledr′s is denotedT r.
Let O be the largest independent set inT .

Let us order the intervals in the increasing order of the right
end points. Greedily select a set of intervalsJ (starting from
the left) such that no two intervals intersect a vertical line.
Two intervals might intersect the same horizontal line. Note
that |J | ≥ |O| whereO is the optimal solution. Partition the
setJ into two setsJ1 andJ2, whereJ1 is the set of intervals
lh(rh) in J such that the other intervalrh(lh) that lies on
horizontal lineh is not inJ , J2 = J \ J1. Intervals inJ1 are
independent, whereas intervals inJ2 are not (as each pair lies
on a horizontal line). GivenJ , partition the intervals in the
O (the optimal solution) as follows:O1 is the set of intervals
that belong toJ , O2 is the set of intervals that intersect with
a pairlj , rj in J2 for some horizontal linej; lj, rj are also
referred to as thesupports for o ∈ O2. O3 = O \{O1∪O2}.
Let |O3| = (|J1| + |J2|)/β, note thatβ ≥ 1.

J can be thought of as a schedule in which some task(s) may
be scheduled twice. One way to obtain a feasible schedule
is to choose one of the intervals inJ2 for each task that is
scheduled twice. There exist examples where for an arbi-
trary choice of these intervals, the performance ratio of the
algorithm is no better than1/2. Let Jr

2 be the set of right-
intervals fromJ2, thenJ1 ∪ Jr

2 is an independent set. The
following is the recursive algorithm (randomized) to deter-
mine an independent set R.

R = independent(T) {

1. If T is empty then return.
2. Determine J as outlined above.
3. Select elements in J1 with probability 1/2 each and

add them to J ′.
4. For each horizontal line j in J2, add one of lj or rj

to J ′ with equal probability.
5. T ′ is the set of intervals from T that do not intersect

(using either horizontal or vertical line) any interval
in J ′.

6. Determine the largest independent set R′ in T ′ re-
cursively (R′= independent(T ′)).

7. Return R′ ∪ J ′.

}

Finally return the larger of the two independent sets R and
J1 ∪ Jr

2 as the result. Next we examine the running time.
Steps 2–5 can be implemented inO(n2) after anO(n log n)
preprocessing (sort) step. Every interval inO2 (subset of the
optimal solution) belongs toT ′ with probability at most1/2,
i.e., the expected number of intervals from the optimal solu-
tion that remain in the subproblem is|O|/2. Hence, the total
number of steps in the recursion is bounded byO(log |O|).
Therefore, the running time is at mostO(n2 log n). It might
be possible to improve the running time using data structures
to maintain deletions in the underlying interval graph. Next,
we give an upper bound onβ (in terms ofα) and a lower
bound on the performance ratioα.

Lemma 1 β ≤ 2α
1−α

Proof. Each intervalo ∈ O2 has a distinct pair of supports
in J2. Futhermore, none of the supports can be a member of
O1. Hence,|J1| + |Jr

2 | = |J1| + |J2|/2 ≥ |O1| + |O2|. The
performance ratioα is

≥
|J1| + |J2|/2

|O1| + |O2| + |O3|

≥
|J1| + |J2|/2

|J1| + |J2|/2 + |O3|

≥
|J1| + |J2|/2

|J1| + |J2|/2 + (|J1| + |J2|)/β

≥ min

{

β

1 + β
,

β

β + 2

}

=
β

β + 2

. �

The next Lemma gives a lower bound on the performance ra-
tio based on the independent set constructed by the recursive
algorithm.

Lemma 2 α ≥ 1/2 + α/(β2β).

Proof. If O′ is the maximum independent set in the subprob-
lem T ′ then in the recursive step (line 6) we are guaranteed
to return an independent setR′ of sizeα|O′|. Hence,

|R′| + |J ′| ≥
|J1| + |J2|

2
+ α|O′|.

Next, we establish a lower bound on|O′|. Consider the bi-
partite graph whose vertices are the setsJ andO3 respec-
tively. Verticesj ∈ J, o ∈ O3 are connected by an edge
if and only if the corresponding intervals intersect a vertical
line. Letdo be the degree of vertexo ∈ O3. The probability
thato ∈ T ′ is 1/2do. Therefore the expected number of in-
tervals inO3 that belong toT ′ is

∑

o∈O3
1/2do. Each vertex

j ∈ J has degreedj ≤ 2, else there is an intervalo ∈ O3

contained in intervalj and this violates the fact thatj was
beforeo in the ordering (sorted according to the right-end
points). Therefore

∑

o∈O3
do ≤ 2(|J1| + |J2|). Hence, the

minimum number of intervals fromO3 that belong toT ′ is

2

given by the following programP :

minimize
∑

o∈O3

1/2do

subject to
∑

o∈O3

do ≤ 2(|J1| + |J2|)

The objective function inP is convex and the min-
imum is achieved when all the variables attain the
same valuedo = 2(|J1| + |J2|)/|O3|. The mini-
mum value≥ |O3|/22(|J1|+|J2|)/|O3|. Therefore|O′| ≥
|O3|/22(|J1|+|J2|)/|O3|. Hence,

|R′| + |J ′| ≥
|J1| + |J2|

2
+

α|O3|

22(|J1|+|J2|)/|O3|

Noting that|O3|β = |J1| + |J2|, we get

|R′| + |J ′| ≥
|J1| + |J2|

2
+

α(|J1| + |J2|)

β22β

Therefore the performance ratioα = (|R′| + |T ′|)/(|J1| +
|J2|) is

≥
1

2
+

α

β22β

. �

Theorem 1 The performance ratio of the randomized algo-
rithm is ≥ 0.5131057527

Proof. Substituting the upper bound forβ due to Lemma 1
in Lemma 2, we get

α =
1

2
+

1 − α

2 × 2(4α

1−α)
.

Solution for the previous equation (due to Maple) is

LambertW (1/4 ln (2)) + 4 ln (2)

8 ln (2) + LambertW (1/4 ln (2))
= 0.5131057527

�

3 Deterministic Algorithm

In this section we first present a randomized algorithm that
is a slight modification of the algorithm presented in the pre-
vious section. Next, we derandomize the algorithm using the
method of conditional expectation [3]. This derandomization
yields the first deterministic algorithm for the problem with
a performance ratio strictly better than1/2. The algorithm
of Chuzhoy et. al. [2] though has a better performance ratio.
However, it has a higher running time and is a randomized
algorithm.

Once again the algorithm first computes the setJ , and then
randomly chooses elements (denotedR) from the setJ as
follows. Elements inJ1 are chosen with probability1/2.

Next, instead of solving the subproblem recursively (line 6),
we compute set̄J (as in Line 2) and returnR∪ J̄1∪ J̄r

2 as the
solution. First we sort the intervals according to their right
end points. Step 2–5 takeO(n2) time. Hence, the running
time isO(n2).

Theorem 2 Performance ratio of the algorithm is ≥
.5128269905.

Proof. The analysis is quite similar to the one in Theorem
1. The independent set discovered by the solution has size
(|J̄| ≥ |O3|)

≥
|J1| + |J2|

2
+

|O3|

2 × 2
2(|J1|+|J2|)

O3

Subsituting for|O3| and dividing by|J1| + |J2|, we get that
the performance ratioα is

≥
1

2
+

1

2β22β

Substituting the upper bound forβ (from Lemma 1) we get

α ≥
1

2
+

1 − α

4α2(4α

1−α)

Solving forα (using Maple) we getα = .5128269905. �

Next, we derandomize the algorithm using the method of
conditional expectation implicitly present in [3]. LetT1 be
the set of intervals inT \{J∪O2}. Let J̄1 ⊆ T1 be the set as
computed in Line 2 of the algorithm presented in the previ-
ous section. It is important to note that|O3| ≤ |J̄1|. Let the
degree (number of intervals inJ that vertically intersecto) of
eacho ∈ J̄1 bedo then the probability thato ∈ T ′ after the
randomized selection (lines 3 and 4) is1

2do
. GivenR ⊆ J ,

consider the following functionw that assigns weights to the
elements ofJ̄1.

w(o) =

0 if o intersects with some element ofR;

1/2m otherwise, whereo intersects withm

intervals inJ \ R.

w(o) is equal to the probability thato will be in the subprob-
lemT ′ (line 6), given someR ⊂ J . W =

∑

o∈J̄1
w(o) when

R = φ is the expected number of intervals from̄J1 that are
in the subproblemT ′.

Consider the following algorithm: order the elements inJ
and consider the intervals according to this ordering. We put
each elementj ∈ J into R or S = J \ R as follows: Either
j ∈ R or j ∈ S. For each of these possibilities compute
the weightsw(o) for all o ∈ J̄1. If the sum of the weights
is larger for the former case thenj belongs toR otherwisej
belongs toS. Next we consider the running time. For each
j ∈ J the weights for allo ∈ J̄1 can be computed inO(n2)

3

time. Therefore, the total running time isO(n3).

Theorem 3 The number of independent intervals in the sub-
problem (⊆ J̄1) after constructing R as above is at least W .

Proof. Consider thekth stage. LetwR(wS) be the sum of
weights of elements in̄J1 when thek +1th interval∈ R(S).
Let w be the sum of weights of the elements inJ̄1 at the start
of the kth stage. Then, by definition of expectationw =
(wR + wS)/2. According to the algorithm outlined above
j ∈ R, if wR ≥ wS elsej ∈ S. Larger ofwR, wS will be at
leastw. Note thatw is W at the start and never decreases in
any stage. Hence, the number of intervals inJ̄1 that do not
intersect with any interval fromR is at leastW at the end of
the algorithm. �

Note that the size of the independent set constructed by the
modified algorithm is

≥ (|J1| + |J2|)/2 + W/2,

using reasoning similar to the one used in Lemma 2, we
get,

≥ (|J1| + |J2|)/2 + 1/2(|J̄1|)/2
2(|J1|+|J2|)

|J̄1|

≥ (|J1| + |J2|)/2 + 1/2(|O3|)/2
2(|J1|+|J2|)

|O3| .

Hence, the analysis in Theorem 2 holds.

To elucidate, consider the example shown in Figure 1. There
are9 tasks labelled1, 2, 3, A, B, C, D, E, F . The left and
the right intervals corresponding to a task lie on the same
horizontal line. SetJ is all the intervals labelled1, 2, 3 and
set O = J̄1 is all the intervals labelledA, B, C, D, E, F .
li is the left interval for taski and ri is the right interval
for task i. Figure 2 shows the weight for individual ele-
ments ofO given the assignments to elements inJ . In the
first stage we consider whether the left or the right inter-
val associated with the task1 belongs to setR. Note that,
w(O) = 1/2(w(O|l1) + w(O|r1). In the first stage the al-
gorithm will pick the right interval associated with the first
task. Next, we consider the intervals associated with task2,
this is contingent uponr1 ∈ R. Note thatw(O|{r1}) =
1/2(w(O|{r1, l2}) + w(O|{r1, r2})). In this second stage
we pick r2 and add it toR. Finally we consider the third
task. Once againw(O|{r1, r2}) = 1/2(w(O|{r1, r2, l3}) +
w(O|{r1, r2, r3})) and we pickr3.

4 Conclusions

We consider the problem of determining the largest indepen-
dent set from a set of horizontal intervals, where two inter-
vals are said to be independent if there is no axis-parallel
line that intersects them. We study the Max SNP-hard ver-
sion of the problem where each horizontal line intersects ex-
actly two intervals and give faster approximation algorithms.
To the best of our knowledge our deterministic algorithm

1 1

2 2

3

A

B

C

D

E

F

Set J

Set O

3

Figure 1: Derandomization Example

SetR w(A) w(B) w(C) w(D) w(E) w(F) w
0 {} 1/2 1/4 1/4 1/4 1/4 1/4 7/4
1 {l1} 0 0 1/4 1/2 1/2 1/4 3/2
1 {r1} 1 1/2 1/4 0 0 1/4 2
2 {r1, l2} 1 0 0 0 0 1/2 3/2
2 {r1, r2} 1 1 1/2 0 0 0 5/2
3 {r1, r2, l3} 1 1 0 0 0 1 2
3 {r1, r3, l3} 1 1 1 0 0 0 3

Figure 2: Weights for the Example

is the first deterministic algorithm with a performance ratio
strictly greater than1/2. It appears that the analysis pre-
sented here is not tight. An open problem is to improve the
analysis.

References

[1] M. Adler, A. L. Rosenberg, R. K. Sitaraman and W. Unger. ‘Scheduling time-
constrained communication in linear network’,In Proc. of 10th Annual ACM
Symposium on Parallel Algorithms and Architectures, (1998), pp. 269–278.

[2] J. Chuzhoy, R. Ostrovsky, Y. Rabani, ‘Approximation Algorithms for the Job
Interval Selection Problem and Related Scheduling Problems’, 42nd Sympo-
sium on Foundations of Computer Science (2001), pp. 348–356.

[3] P. Erdos and J. L. Selfridge, ‘On a Combinatorial Game’,Journal of Combina-
torial Theory (B) 14 (1973), pp. 298–301

[4] T. Erlebach and F. C. R. Spieksma, ‘Interval selection: applications, algorithms,
and lower bounds’,Journal of Algorithms, 46(1),(2003) 27–53.

[5] J. M. Keil, ‘On the complexity of scheduling tasks with discrete starting times’,
Operations Research Letters, 12 (1992) 293–295.

[6] K. Nakajima and S. L. Hakimi, ‘Complexity results for scheduling tasks with
discrete starting times’,Journal of Algorithms, 3 (1982) pp. 344-361.

[7] F. C. R. Spieksma, ‘On the approximability of an intervalscheduling problem’,
Journal of Scheduling, 2 (1999) pp. 215–227.

[8] F. C. R. Spieksma and Y. Crama, ‘The complexity of scheduling short tasks
with few starting times’, Research Report M92–06, Department of Mathemat-
ics, Maastricht University, 1992.

[9] D. K. Y. Yau and S. S. Lam, ‘Adaptive rate-controlled scheduling for multimedia
applications’,IEEE/ACM Transactions on Networking, 5(4) (1997) pp. 475-488.

4

