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Abstract Keil [5] showed that the interval scheduling problem is NP-
complete even when each task can be scheduled in at most
We consider the problem of determining the largest inde- three ¢ = 3) places. Spieksma and Crama [8] established
pendent set in a set of horizontal intervals, where two in- that the decision version of the problem is strongly NP-
tervals are defined to be independent if they are not stabbedcomplete even for the case whén= 3, and the process-

by any axis-parallel line. This problem arises naturally in ing times are eithet or 2, thereby improving the result of
non-preemptive scheduling of tasks on uni-processors. WeKeil. Spieksma [7] showed that there does not exist a poly-
study a Max SNP-hard restriction of the problem and give nomial time approximation scheme for the problem for all

a randomized and a deterministic approximation algorithm. k¥ > 2 unless P = NP. Spieksma [7] also gave an approxima-

The deterministic algorithm is the first with performance
ratio strictly greater thari /2 to the best of our knowl-
edge.

Keywords: Approximation algorithms, Interval scheduling,
Non-preemptive scheduling on single processor, Job iaterv
selection problem.

1 Introduction

Given a set of horizontal intervals in 2D, define two inter-
vals to be independent if their projections do not overlap ne
ther in the x-axis nor in the y-axis. The problem is to deter-

mine the largest independent set of intervals. This problem

has applications in the area of task scheduling.7Lbe the
minimum number of horizontal lines that stab all the inter-
vals, andk be the maximum number of intervals that lie on
any horizontal line. Each horizontal liiecorresponds to a
task. IntervalsK;1, hio, ..., h;; : j < k) that lie onh cor-
respond to the possible slots when the task can be execute
Note that the processing time of a task is variable, in that

tion algorithm with performance ratib/2 for the problem,

and posed as an open question the design of approximation
algorithms with improved performance ratio. Chuzhoy, Os-
trovsky and Rabani [2] gave a randomized approximation al-
gorithm (based on a linear programming relaxation) with an
expected performance ratio ¢fe — 1)/e) — € for the gen-

eral case; for the case whén= 2 their bound is3/4 — e.

The need to solve a linear program motivates us to design a
simpler and faster algorithm. In this paper we address this
question and for the case whén= 2 we give a random-
ized approximation algorithm with a performance ratio of
0.5131057527 and a deterministic approximation algorithm
with a performance ratio 065128269905. This deterministic
algorithm is the first with performance ratio strictly great
than1/2 to the best of our knowledge. In the rest of the pa-
per, we assume there is no restriction on the processingtime
andk = 2. Our assumption, stated in terms of intervals;
the lengths of the intervals are arbitrary and each horaont
line intersects exactly two intervals. Max SNP-hardness of

Jhe problem under consideration (denoted JISP-2) was-estab

lished by Spieksma [7]. We note that whier-= 2, Keil's ob-

it depends on the start time. A task needs to be scheduledservation [5] can be used to determine whether all the tasks

only once. The problem is to schedule maximum number
of tasks without preemption on a single processor. Equiv-
alently, determine the largest cardinality independehbte
intervals. This problem is also known as the interval schedu
ing problem [7] and the job interval selection problem (JISP
[2, 4]. The problem arises in the manufacturing of printed
circuit boards [8], in computation in real-time environnen
[6], adaptive rate controlled scheduling for multimediplap
cations [9] and time constrained communication scheduling

[1].
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can be scheduled i®(n) time (the problem reduces to 2-
SAT). When all the tasks cannot be scheduled using Keil's
approach, it is natural to determine the maximum number of
tasks that can be scheduled.

We develop two simple and fast randomized approximation
algorithms for the JISP-2 problem that have performance ra-
tio strictly greater than 1/2. The second algorithm is deran
domized using the method of conditional expectation [3]. To
the best of our knowledge the derandomized algorithm is the
first deterministic algorithm with performance ratio stiic
greater than 1/2. Furthermore, it should be noted that the
running times of our algorithms are considerably bettentha
the previous LP based approaches. A naive implementation
of the randomized algorithms have running time:? log n)
andO(n?). The deterministic algorithm has running time



O(n?).
2 Randomized Algorithm

In this section we demonstrate0a5131057527 factor ran-
domized approximation algorithm for the optimization ver-
sion of the problem whek = 2. Note that our algorithm
does not constrain the processing times.

Inputis a sefl’ = {i1,r1,la,72,...,1l,, 7} Of 2n intervals
where intervald;, r; lie on horizontal liney = i. Denote
the set of left-intervalgly, o, . .., 1,,} usingT" and the cor-
responding set of right-intervals labellets is denotedl™.
Let O be the largest independent sefin

Let us order the intervals in the increasing order of thetrigh
end points. Greedily select a set of intervdlstarting from
the left) such that no two intervals intersect a verticalin
Two intervals might intersect the same horizontal line.eéNot
that|.J| > |O| whereO is the optimal solution. Partition the
setJ into two sets/; and.Js,, whereJ; is the set of intervals
In(rp) in J such that the other interval,(I;,) that lies on
horizontal lineh is notinJ, J, = J \ J;. Intervals inJ; are
independent, whereas intervalsinare not (as each pair lies
on a horizontal line). Giver, partition the intervals in the
O (the optimal solution) as followsD, is the set of intervals
that belong taJ, Os is the set of intervals that intersect with
a pairl;,r; in J, for some horizontal ling; [,,r; are also
referred to as theupportsforo € 0. O3 = O\ {01 UO2}.
Let|Os| = (|J1] + |J2])/3, note that3 > 1.

J can be thought of as a schedule in which some task(s) may

Finally return the larger of the two independent sets R and
J1 U J3 as the result. Next we examine the running time.
Steps 2-5 can be implemented®in?) after anO(n log n)
preprocessing (sort) step. Every intervaln (subset of the
optimal solution) belongs t@” with probability at most /2,

i.e., the expected number of intervals from the optimal solu
tion that remain in the subproblem|i®|/2. Hence, the total
number of steps in the recursion is boundedijog |O]).
Therefore, the running time is at mastn? log n). It might

be possible to improve the running time using data strusture
to maintain deletions in the underlying interval graph. tex
we give an upper bound af (in terms of«) and a lower
bound on the performance ratio

Lemmal § < 2%

Proof. Each intervab € O, has a distinct pair of supports

in Jo. Futhermore, none of the supports can be a member of
O1. Hence,|J1| + |J2T| = |J1| + |J2|/2 > |01| + |02| The
performance ratio is

[J1| + | J2]/2
~ O1] + 02| + |Os]

|J1]| + | J2|/2
i+ | 2] /2 4+ 05

S |J1] + | J2]/2
=+ el /2 + (i) + [ =)/ 8

>min{ B B }— s
= 1+6"5+2 B+ 2

be scheduled twice. One way to obtain a feasible schedule: u

is to choose one of the intervals ih for each task that is

scheduled twice. There exist examples where for an arbi-

trary choice of these intervals, the performance ratio ef th
algorithm is no better thah/2. Let JJ be the set of right-
intervals fromJ,, thenJ; U J is an independent set. The
following is the recursive algorithm (randomized) to deter
mine an independent set R.

R = independent(T) {

1. If T is empty then return.

Determine J as outlined above.

3. Select elements in J; with probability 1/2 each and
add themto J'.

4. For each horizontal line j in J,, add one of /; or r;
to J’ with equal probability.

5. T" is the set of intervals from T that do not intersect
(using either horizontal or vertical line) any interval
inJ'.

6. Determine the largest independent set R’ in T” re-
cursively (R’= independent(T")).

7. Return R'U J'.

N

The next Lemma gives a lower bound on the performance ra-
tio based on the independent set constructed by the reeursiv
algorithm.

Lemma2 a > 1/2+ «a/(52°).

Proof. If O’ is the maximum independent set in the subprob-
lemT” then in the recursive step (line 6) we are guaranteed
to return an independent sBt of sizea|O’|. Hence,

J J.
|R/|+|J/|2| 1|—£| 2|

+ a0

Next, we establish a lower bound ¢&'|. Consider the bi-
partite graph whose vertices are the sétand O; respec-
tively. Verticesj € J,0 € O3z are connected by an edge
if and only if the corresponding intervals intersect a \cati
line. Letd,, be the degree of vertexe Os. The probability
thato € 7" is 1/24. Therefore the expected number of in-
tervals inO; that belong tal” is ) . ,, 1/2%. Each vertex

j € J has degred; < 2, else there is an interval € Os
contained in intervaj and this violates the fact thatwas
beforeo in the ordering (sorted according to the right-end
points). Thereforé_ .. d, < 2(|J1] + |J2]). Hence, the
minimum number of intervals fromY; that belong tdl”’ is



given by the following progran#:

minimize >~ 1/2¢%
0€03

subjectto  d, < 2(|1| + | J2|)
0€03

The objective function inP is convex and the min-
imum is achieved when all the variables attain the
same valued, 2()J1] + |J2])/|0s].  The mini-
mum value> |03]/22(/11+1721)/10s]  Therefore|O'| >
|O3|/22(\Jl\+|J2|)/|03|' Hence,

|J1| + | J2] a|O3|

/ !
IR+ 172 — 52071+ 1720 /1031

Noting that|Os|5 = |Ji| + | J2|, we get

|J1| + |J2| | (] J1] + | J2])
2 3220

R+ || =

Therefore the performance ratio= (|R'| + |T"|)/(|/1] +
|J2|) is
«

2 5+ 57

+

N~

O

Theorem 1 The performance ratio of the randomized algo-
rithmis > 0.5131057527

Proof. Substituting the upper bound fordue to Lemma 1
in Lemma 2, we get
1 l-a

~+

a= _—
2 9y oli™%)

Solution for the previous equation (due to Maple) is

LambertW (1/41n(2)) + 4 In (2)

= 0.5131057527
8 In (2) + LambertW (1/4 In (2))

3 Deterministic Algorithm

Next, instead of solving the subproblem recursively (lipe 6
we compute sef (as in Line 2) and retur U J; U J3 as the
solution. First we sort the intervals according to theihtig
end points. Step 2-5 take(n?) time. Hence, the running
time isO(n?).

Theorem 2 Performance ratio of the algorithm is >
.5128269905.

Proof. The analysis is quite similar to the one in Theorem
1. The independent set discovered by the solution has size
(171 = 10s)

|03
2([J1[+1J2D
2% 2 O3

S [J1| + | J2]
- 2

Subsituting folO3| and dividing by|.J; | + | J2|, we get that
the performance ratia is

N 1 + 1

=2 23228

Substituting the upper bound fér(from Lemma 1) we get
11—«

1a2(:%)

Solving fora (using Maple) we getr = .5128269905.

a> -+

N | =

O

Next, we derandomize the algorithm using the method of
conditional expectation implicitly present in [3]. L&} be

the set ofintervalsifi'\ {JUO,}. Let.J; C T be the set as
computed in Line 2 of the algorithm presented in the previ-
ous section. It is important to note thats| < |J;|. Let the
degree (number of intervals ihthat vertically interseat) of
eacho € J; bed, then the probability that € T’ after the
randomized selection (lines 3 and 4)5%. GivenR C J,
consider the following function that assigns weights to the
elements off; .

0 if o intersects with some element Bf
1/2™  otherwise, where intersects withn
intervals inJ \ R.

w(o)

In this section we first present a randomized algorithm that w(o) is equal to the probability thatwill be in the subprob-
is a slight modification of the algorithm presented in the- pre lem7” (line 6), givensoméz C J. W =} . ; w(o) when

vious section. Next, we derandomize the algorithm using the 2 = ¢ is the expected number of intervals frof that are
method of conditional expectation [3]. This derandomiati  in the subproblernd”.

yields the first deterministic algorithm for the problem hwit

a performance ratio strictly better thayi2. The algorithm and consider the intervals according to this ordering. We pu

of Chuzhoy et. al. [2] though has a better performance ratio. each element € J into R or S — J \ R as follows: Either

:I(g)]v(;lr?':/her; ithas a higher running time and is a random|zedj € Rorj € S. For each of these possibilities compute

the weightsw(o) for all o € J;. If the sum of the weights
is larger for the former case thegrbelongs taR otherwisej
belongs taS. Next we consider the running time. For each
j € J the weights for alb € J; can be computed i®(n?)

Consider the following algorithm: order the elements/in

Once again the algorithm first computes the .seand then
randomly chooses elements (denof@dfrom the set/ as
follows. Elements inJ; are chosen with probability /2.



time. Therefore, the total running time@n?).

Theorem 3 The number of independent intervalsin the sub-
problem (C J;) after constructing R as aboveisat least 1.

Proof. Consider the:*" stage. Letwgr(ws) be the sum of
weights of elements i, when thek + 1* intervale R(S).
Letw be the sum of weights of the elements/inat the start

of the k" stage. Then, by definition of expectatian =
(wr + wg)/2. According to the algorithm outlined above
j € R, ifwg > wg elsej € S. Larger ofwg, wg will be at
leastw. Note thatw is W at the start and never decreases in

Figure 1: Derandomization Example

any stage. Hence, the number of intervalg/inthat do not

intersect with any interval fron® is at leastl” at the end of
the algorithm. O

Note that the size of the independent set constructed by the

modified algorithm is

> (Il +1720)/2 + W/2,

SetR w(A) | wB) | w(C) | w(D) | wE) | w(F) | w
ol {} 1/2 1/4 1/4 1/4 1/4 1/4 | 7/4
1| {l.} 0 0 1/4 1/2 1/2 1/4 | 3/2
1| {r:} 1 1/2 1/4 0 0 1/4 2
2 | {r,l2} 1 0 0 0 0 1/2 | 3/2
2| {r1,r2} 1 1 1/2 0 0 0 5/2
3| {r1,re, 13} 1 1 0 0 0 1 2
3| {ri,rs, I3} 1 1 1 0 0 0 3

using reasoning similar to the one used in Lemma 2, we
get,

2J1 141720
[J1]

> (4] + | 2])/2+ 1/2(]71])/2

2(J11+1J2D

> ([ L]+ 1J2)/2 + 1/2(10s]) /27 1051
Hence, the analysis in Theorem 2 holds.

To elucidate, consider the example shown in Figure 1. There
are9 tasks labelled, 2,3, A, B,C, D, E, F. The left and
the right intervals corresponding to a task lie on the same
horizontal line. Set/ is all the intervals labelled, 2, 3 and
setO = J; is all the intervals labelled{, B,C, D, E, F.

l; is the left interval for task andr; is the right interval

for taski. Figure 2 shows the weight for individual ele-
ments ofO given the assignments to elements/inIn the
first stage we consider whether the left or the right inter-
val associated with the taskbelongs to sef2. Note that,
w(0) = 1/2(w(0|l1) + w(O|r1). In the first stage the al-
gorithm will pick the right interval associated with the firs
task. Next, we consider the intervals associated with 2ask
this is contingent upom; € R. Note thatw(O|{r1}) =
1/2(w(Ol{r1,12}) + w(O|{r1,7r2})). In this second stage
we pickr, and add it toR. Finally we consider the third
task. Once agaiw(O|{r1,72}) = 1/2(w(O|{r1,r2,13}) +
w(O{r1,r2,73})) and we pickrs.

4 Conclusions

We consider the problem of determining the largest indepen-
dent set from a set of horizontal intervals, where two inter-

vals are said to be independent if there is no axis-parallel
line that intersects them. We study the Max SNP-hard ver-
sion of the problem where each horizontal line intersects ex

actly two intervals and give faster approximation algorith

To the best of our knowledge our deterministic algorithm

(1

[2

(3]

Figure 2: Weights for the Example

is the first deterministic algorithm with a performanceati
strictly greater than /2. It appears that the analysis pre-
sented here is not tight. An open problem is to improve the
analysis.
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