
Optimally Placing a Star on a Point Set

Prosenjit Bose∗ Jason Morrison∗

Abstract

We consider the problem of placing a star ~R on a set S
of n points in the plane in order to maximize a given ob-
jective function. A star ~R is a set of m rays {r1, . . . , rm}
in R

2, emanating from a point p such that the angle be-
tween two consecutive rays is 2π/m. The cone defined
by two consecutive rays with apex p is k-occupied if it
contains at least k points of S. We design algorithms
to compute placements of ~R that maximize or minimize
the number of k-occupied cones of ~R. Our main result
is an O(nm3 log(m) + nm log(nm))) time algorithm for

finding a placement of ~R that maximizes the number of
k-occupied cones.

1 Introduction

This paper studies a series of star placement problems
whose goal is to partition a point set S while optimizing
a given objective function. To simplify the analysis, all
stars ~R have m rays that are equally spaced around a
central point. We assume that the order of the rays
around the central point is fixed and the only variable
is the position of the central point. We note that most
of the results presented can be extended to stars whose
rays are not equally spaced, with appropriate (and only
minor) modifications to running time and space.

The small sized description of an oriented star allows
us to partition a point set S into possibly many unique
sub-sets while allowing quick query time to decide what
sub-set a given query point may belong. This partition-
ing is a generalization of the partitioning to construct
static quad-trees and k-d trees[1]. Due to the general-
ization, the recursive use of the partitioning techniques
described constructs data structures similar to quad-
trees with degree m.

Returning to the mathematical definitions, a cone of
~R is said to be k-occupied if it contains at least k points.
A placement of a star ~R has occupancy h if at least h of
its m cones are 1-occupied. The placement of a star ~R
has a k-occupancy of c if c of its cones are k-occupied.
We present algorithms to find star placements that solve
the following problems:

∗Research supported in part by NSERC. School of Com-

puter Science, Carleton University, Ottawa, Canada, jit,

morrison@scs.carleton.ca

Problem 1 Find a placement of ~R that maximizes the
occupancy of ~R.

Problem 2 Given a fixed integer k, find a placement
of ~R that minimizes/maximizes the k-occupancy of ~R.

Problem 3 Given a fixed integer k find a placement of
~R (if one exists) such that no cone of ~R is k-occupied.

Problem 4 Find the smallest integer k such that there
exists a placement of ~R with k-occupancy 0.

Problem 5 Given a fixed integer c, find the largest in-
teger k such that there exists a placement of ~R with k-
occupancy at least c.

The solutions presented in this paper are based on
computing the region of possible placements of ~R that
ensure that a specific cone of ~R is at most k-occupied.
By computing these regions for the different cones and
different values of k it is possible to determine the solu-
tions for each of the above problems.

For the remainder of this paper we assume that the
points contained in S are in general position with re-
spect to the star. Specifically all lines l, parallel to any
of the m rays, contain at most 1 point of S.

2 kth Maximal Regions

Given a cone ~C with a specific orientation, the kth max-
imal region Mk(S, ~C) is the region of the plane where

the placement of ~C contains at most k points of S. We
refer to the boundary of the kth maximal region as the
kth maximal layer. This section provides an O(n log n)
time algorithm for computing the kth maximal layer of
a given cone.

The kth maximal layer and kth maximal region de-
pend on the orientation of the input cone ~C. We as-
sume without loss of generality that ~C has one ray (ri1)
oriented along the positive y axis and a second ray (ri2)
α < π radians c.w. from the first.

2.1 Properties of maximal layers and regions

Several properties are useful in constructing the kth

maximal region. First, the boundary (i.e., the kth max-

imal layer hereafter denoted ∂Mk(S, ~C)) is not part of

the region. ∂Mk(S, ~C) partitions the plane into two
open regions. One region has the property that the

1

a) b) c)

Figure 1: a) initializing ∂Mk(S, ~C) b) 1st up-

date of ∂Mk(S, ~C) c) post-processing of ∂Mk(S, ~C)
Maximal region boundary is shown for k = 2 and
oriented cone as displayed, updates to ∂Mk(S, ~C) are
shown with thick dotted segments.

placement of the apex of ~C in the region results in ~C
containing at most k points. The placement of the apex
in the other region results in ~C containing more than k
points. Thus any placement of ~C on ∂Mk(S, ~C) must

have at least one point on the boundary of ~C, and con-
tain at most k points in its interior.

Second, note that ∂Mk(S, ~C) consists of straight seg-

ments parallel to the bounding rays of ~C (details are
given in the full version of the paper [4]).

2.2 Construction

We now show how to compute the boundary of the kth

maximal region. First, the points of S are sorted in
the direction perpendicular to ri2. We call this the ri2

ordering. The general position assumption guarantees
that this is a total order on the points of S. The points
are processed in a plane sweep using the ri2 ordering
from maximum to minimum. After each event point pi,
the boundary of the kth maximal region, ∂Mk(n), might
be updated farther along the ri1 or ri2 ordering. A pri-
ority queue holds k+1 of the points contained in a cone
~C placed at the rightmost event point of ∂Mk(n). This
ensures the algorithm’s invariant that there are more
than k points within any cone placed on the boundary
constructed and at most k of those points are strictly
interior.

The algorithm begins by initializing the priority
queue with the first k + 1 event points. The bound-
ary ∂Mk(S, ~C) is updated by adding the ray of the line
passing through the k + 1st event point and parallel to
ri2 from −∞ in the x-direction to the lowest ri1 order-
ing in the queue (See Figure 1a). The point q is the end
point of the newly added ray.

When a new event point pbottom is swept over it is
inserted into the priority queue and one of the following
cases is occurs:

1. If the ri1 ordering of the inserted point is strictly
less than all of the other points, then it is removed

from the queue and ∂Mk(S, ~C) remains the same.

2. Otherwise the point pleft at the top of the queue
having the minimum ri1 ordering should be deleted
from the queue and value pleft should be updated.

The boundary ∂Mk(S, ~C) is subsequently updated
as follows:

(a) Add the vertical segment from q to the line
parallel to ri2 passing through pbottom. Set q
to this new endpoint.

(b) Add a segment parallel to ri2 from q to the
line parallel to ri1 passing through the new
pleft. Set q to this new endpoint.

When the sweep is completed ∂Mk(S, ~C) has to be
updated with the vertical ray from q to −∞ in the y
direction.

Theorem 1 For a given point set S an arbitrary in-
teger k < |S| = n, and an oriented cone ~C the kth

maximal region of S with respect to ~C is computable in
O(n log n) time and O(n) space.

Proof. First we show that the algorithm maintains the
invariant that there are more than k points within a
cone placed anywhere along the constructed boundary
and at most k of those points are strictly interior. We
prove this invariant by induction on the number of event
points generating segments in the boundary.

The base case is the insertion of the initial ray. By
definition this ray any cone ~C placed on the ray must
contain k + 1 points with one on ri2.

Assume that the invariant is maintained after the ith

event point generating a segment in the boundary. Now
consider the i + 1st such event point. If the event point
has an ri1 ordering less than q then it will be to the
left of the remainder of boundary, by construction, and
therefore cannot be contained in any cones placed on
that portion of the boundary. Furthermore due to its
ri2 ordering it is below the boundary previously con-
structed and therefore cannot be contained in any cones
placed on that portion of the boundary. This proves
that discarding the point in Case 1) does not affect the
invariant.

For Case 2, a cone ~C placed at q or along the added
vertical segment will contain pleft on its boundary. Of
the remaining k + 1 points in the queue at most k can
be strictly interior to ~C because the point pbottom can
only be on the boundary of ~C at the new q after step
2a). For any cone placed along the new segment par-
allel to ri2 the point pbottom must be on the boundary
by construction and the old pleft can only be on the
boundary of the cone. This leaves at most k points in
the queue that can be strictly interior to any ~C placed
on the boundary.

2

~
C′

1
~

C′

2 ~
C′

3

~
C′

4

Figure 2: A set of cones representing Mk(S, ~C)

Since the cone always has at least a single point on
the boundary and the remaining k points can be in the
interior the invariant must be true. This proves the
inductive case and thereby proves that the invariant is
kept by the algorithm.

It remains to be shown that by maintaining the invari-
ant the algorithm constructs the correct boundary. This
proof is direct as the constructed boundary has proper-
ties identical to the desired boundary as proven by the
invariant. Since we have proven that there is only one,
connected boundary then the constructed boundary is
correct.

Analyzing the algorithm complexity we note that the
sorting phase requires O(n log n) and, the O(n) inser-
tions and deletions in the priority queue use O(n log k)

time. Finally, the size of ∂Mk(S, ~C) is O(n) because at
most two segments are added for each deletion and at
most O(n) deletions are performed.

�

As noted above, the kth maximal region divides the
plane into two regions: the region (Mk(S, ~C)) and its

complement (Mk(S, ~C) = R
2 − Mk(S, ~C)). An impor-

tant property to note is that Mk(S, ~C) can be rep-
resented as the union of a set of O(n) cones each

of whose angle is the same as the angle of ~C. The
proof of correctness of this representation follows di-

rectly from discussion above. Formally, Mk(S, ~C) =

{ ~C′

1 ∪ . . .∪ ~C′
O(n)} where ~C′ is the cone ~C rotated by π

radians (see Figure 2). Since ∂Mk(S, ~C) can be calcu-
lated in O(n log n) time and O(n) space, the cone rep-

resentation of Mk(S, ~C) can be computed in the same
time.

3 Solutions

The first observation about Problems 1-5 is that a sim-
ple brute force approach exists for each of the problems.
Consider the arrangement resulting by placing a star ~R
on each point in S. It is easy to see that one can re-
strict their search to star placements on vertices of this

arrangement. However, the resulting arrangement has
a complexity of O(n2m2). In the following section we
achieve a better result by using geometric properties
of k maximal regions. We begin by presenting a gen-
eral technique for solving placement problems of stars
(Section 3.1). In Section 3.2 we apply this technique to
Problems 1-5 thus providing algorithmic solutions for
each problem.

3.1 A Maximal Region Approach

The star placement problems of this paper are occu-
pancy based problems. Our approach to solve these
problems is to construct the complement of the kth max-
imal region for each of the m cones in ~R. Once the re-
gions are calculated they are overlayed and the resulting
arrangement is examined. From this arrangement it is
possible to tell exactly which cones contain strictly more
than k points. Depending on the problem either one or
more values of k may have to be examined. The remain-
der of this section explains the details of the approach
outlined above for an arbitrary value k.

First, each of the m regions Mk(S, ~Ci) are calcu-
lated using the algorithm described in Section 2.2.
This requires O(mn log n) time and O(nm) space. The

boundary of each region Mk(S, ~Ci) is represented by
the upper envelope of the O(n) cones with fixed an-
gle 2π

m
and identical orientation. A result by Efrat

et al. [3] shows that the complexity of the arrange-
ment of such boundaries is O(nm3 log m) and is com-
putable using Chazelle and Edelsbrunner’s algorithm [2]
in O(nm3 log m + nm log(nm)) time.

Once the arrangement has been computed, each edge
can be visited in depth first search order. Changing
from one edge to the next is equivalent to maintain-
ing the dynamic partitioning of the point set. This
can be done in O(1) time per change and with at most
O(nm3 log m) such changes.

Theorem 2 Given a planar point set S, a star ~R com-
prised of m cones { ~C1, . . . , ~Cm} and an integer k, the

arrangement of all regions Mk(S, ~Ci) can be examined
in O(nm log nm + nm3 log m) time and O(nm3 log m)
space.

Corollary 3 Given a planar point set S, an oriented
star ~R comprised of a constant number of oriented cones
{ ~C1, . . . , ~CO(1)} and an integer k, the arrangement of all

regions Mk(S, ~Ci) can be examined in O(n log n) time
and O(n) space.

3.2 Solutions and Analyses

This section details the application of the maximal re-
gion approach to star placement problems. Five occu-
pancy based problems are studied and full analyses of

3

the solutions are given. Each problem assumes that we
are given a planar point set S and a star ~R.

Problem 1 Find a placement of ~R that maximizes the
occupancy of ~R.

The goal is to find a placement of ~R for which the
most number of cones contain at least one point. This
is the same as finding a point at which the most num-

ber of M0(S, ~Ci)’s overlap. Thus a solution can be

computed by examining the arrangement of M0(S, ~Ci)’s
as described in the previous section and maintain-
ing the maximum overlap. The total complexity of
this algorithm is O(nm3 log m + nm lognm) time and
O(nm3 log m) space. The minimization version of this
problem is omitted as it is always possible to achieve an
occupancy of 1 in any desired cone.

Problem 2 Given a fixed integer k, find a placement
of ~R that minimizes/maximizes the k-occupancy of ~R.

The second problem is a generalization of the first.
The difference between the solutions for these prob-
lems is that problem 2 examines the arrangement of

Mk−1(S, ~Ci)’s. As before the solution is computed
by examining the arrangement and maintaining where
the (least/most) number of overlapping regions occurs.
This is accomplished in O(nm3 log m+nm lognm) time
and O(nm3 log m) space.

Problem 3 Given a fixed integer k find a placement of
~R (if one exists) such that no cone of ~R is k-occupied.

This problem is presented because our solution for the
next problem uses this as a sub-problem. This problem
is solved by finding the placement with minimum k-
occupancy and determining if that k-occupancy is zero.
Since that adds only O(1) time to Problem 2 this prob-
lem is also solvable in O(nm3 log m + nm log nm) time
and O(nm3 log m) space.

Problem 4 Find the smallest integer k such that there
exists a placement of ~R with k-occupancy 0.

An alternative expression of this problem is to find the
placement of ~R that minimizes the maximum number
of points in any cone. The goal is to search through
possible values of k and find the minimum value for
which there exists a placement with k-occupancy 0.

We claim that the optimal value of k must lie in the
interval [d n

m
e, dn

2 e]. This is because each point must lie
in at least one cone and at worst all of the points can
be split into at least two cones by placing the star on
the median of an arbitrary ordering ri.

Furthermore, determining k is possible using binary
search on the interval [d n

m
e, dn

2 e]. This is validated by
observing that the k-occupancy of any placement that

minimizes the maximum number of points in any cone
the k-occupancy of such a point decreases monotoni-
cally as k increases. This leads to a O((nm3 log m +
nm lognm) log n) time and O(nm3 log m) space algo-
rithm. With a more careful binary search this is re-
ducible from an O(log n) factor to O(log δ) where the
optimum value of k = d n

m
e + δ.

Problem 5 Given a fixed integer c, find the largest in-
teger k such that there exists a placement of ~R with k-
occupancy at least c.

This is a clustering problem (that creates c equally
large clusters each of size at least k) using the star
placement as the clustering tool. The solution to
this problem is similar to the solution for the previ-
ous problem. Since n points must be partitioned be-
tween at least c cones we have that k ≤ bn

c
c. As be-

fore we are able to use binary search with each itera-
tion selecting a value k and determining if the maxi-
mum k-occupancy is at least c. Thus the problem is
solvable in O((nm3 log m + nm log nm) log n) time and
O(nm3 log m) space.

We note that for values of n > m log m our algorithms
are better than the brute force technique. But for large
values of m the brute force technique is preferable.

4 Conclusion

We have provided a new technique to partition planar
point sets. In doing so we studied a generalization of
maximal layers and provided an algorithm for their con-
struction. The results presented here do generalize to
non-equally spaced stars with modifications to the run-
ning time and space. The algorithm for maximal layers
also generalizes to handle degeneracies when the points
are not in general position.

References

[1] M. de Berg, M. van Kreveld, M. Overmars and
O. Schwartzkopf. Computational Geometry: Algorithms

and Applications, Springer-Verlag, Berlin, 1997.

[2] B. Chazelle and H. Edelsbrunner. An optimal algorithm
for intersecting line segments in the plane. Journal of

the ACM, 39(1):1–54, January 1992.

[3] A. Efrat, G. Rote, and M. Sharir. On the union of
fat wedges and separating a collection of segments by a
line. Computational Geometry: Theory & Applications,
3(5):277–288, November 1994.

[4] J. Morrison. Geometric Placement Problems. PhD the-
sis, School of Computer Science, Carleton University, Ot-
tawa, Canada, May 2002.

4

