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Abstract

A FISC, or family of intersecting simple closed curves,
is a collection of simple closed curves in the plane with
the properties that there is some open region common
to the interiors of all the curves, and that every two
curves intersect in finitely many points or arcs.

Let F be a FISC with a set of open regions R. F
is said to be area-proportional with respect to weight
function ω : R → R+ if there is a positive constant
α such that for any two finite regions, r1 and r2,
area(r1)/area(r2) = αω(r1)/ω(r2).

We consider F as a directed plane graph, ~G(F), where
the curve intersections are vertices and the curve arcs
between vertices are edges. Edges are directed so that
each of F ’s curves is traversed in a clockwise fashion.
The directed plane dual of ~G(F), denoted ~D(F), has
edges oriented to indicate inclusion in fewer interiors of
the curves. The graph ~G(F) has an area-proportional
drawing with respect to ω if there is some FISC C that
is area-proportional to ω and where F can be trans-
formed into C by a continuous transformation of the
plane. We describe an O(n|V |) algorithm for creating
an area-proportional drawing of ~G(F) = (V,E) where F
is a FISC with n curves and ~D(F) has only one source
and only one sink. For the case of n-Venn diagrams,
since |V | ≤ 2n − 2, this yields an O(|V |lg|V |) drawing
algorithm.

1 Introduction

A drawing of a plane graph G = (V, E, F ) is said to
be area-proportional with respect to weight function ω :
F → R+ if there is a positive constant α such that for
any two finite faces, f1 and f2, area(f1)/area(f2) =
αω(f1)/ω(f2).

Cartograms [10] are a common application of area-
proportional drawings whereby the regions of a geo-
graphic map are distorted to represent quantitative val-
ues (e.g., population). Euler and Venn diagrams [8, 7]
are a visual representation of a set system; in such di-
agrams, each class of objects is represented by a single
curve, and the regions of overlap represent objects that
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belong to more than one class. Area-proportionality has
been used to augment Euler and Venn diagrams with a
perceptual indication of the set sizes [1, 4].

In this paper, we present an algorithm for creating
area-proportional drawings of a special class of plane
graphs that represent families of intersecting simple
closed curves, or FISCs. A FISC F is a collection of
simple closed curves in the plane with the properties
that there is some open region common to the interi-
ors of all curves, and that every two curves intersect
in finitely many points or arcs. We consider F as a
directed plane graph, ~G(F), where the curve intersec-
tions are vertices and the curve arcs between vertices
are edges. Edges are directed so that each of F ’s curves
is traversed in a clockwise fashion. The directed plane
dual of ~G(F), denoted ~D(F), has edges oriented to indi-
cate inclusion in fewer interiors of the curves. Figure 1
shows an example of a FISC and its associated graphs.
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Figure 1: (a) A three curve FISC F represented by
a directed plane graph ~G(F). (b) The corresponding
directed dual ~D(F).

Our algorithm is an extension of previous work by
Bultena, Grünbaum, and Ruskey [3], that considered
drawings of FISCs where each curve was convex. The
proofs of their results involved continuous transfor-
mations of the plane; in addition to drawing area-
proportional FISCs, our algorithm provides a discrete
combinatorial proof of their results.

We conclude by relating our algorithm to existing car-
togram algorithms and consider how it can be applied
to generate and draw area-proportional Euler and Venn
diagrams.
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2 Mathematical Background

Let ~G(F) be a directed plane graph representing FISC
F . Each face f of ~G(F) is associated with a vertex v(f)
in the directed dual ~D(F).

If ~D(F) has a single source v(s) and a single sink v(t),
then F is said to be monotone. A FISC is ray-monotone
if there exists a point x such that every ray emanating
from x intersects each curve exactly once. The following
lemma by Bultena, Grünbaum, and Ruskey [3] relates
monotonicity and ray-monotonicity.

Lemma 1 If a FISC is monotone, then it is isomorphic
(by a continuous transformation of the plane) to a ray-
monotone FISC.

The proof of Lemma 1 involves continuous transfor-
mations of the plane along laminar flows and does not
provide a discrete algorithm for defining the isomor-
phism. One of the consequences of our algorithm is
a discrete combinatorial proof of Lemma 1 based on the
following lemma.

Lemma 2 Let P be a path in ~D(F) from v(s) to v(t).
The graph that results from removing P ’s respective dual
edges from ~G(F) is acyclic.

Proof. Omitted for brevity. ¤

A consequence of monotonicity is that each face of
~G(F) is comprised of two directed paths that share a
common source and a common sink (see Fig. 1(a)), as
described in the following lemma.

Lemma 3 If F is monotone (i.e., ~D(F) has a single
source v(s) and a single sink v(t)), then the perimeter
of any face f of ~G(F), other than s and t, is comprised
of two directed paths that share a common head h(f)
and a common tail t(f).

Proof. Consider the proof of Lemma 1.1 [3] in terms
of ~G(F) rather than ~D(F). ¤

3 Algorithm

Based on Lemmas 1–3, our algorithm draws ~G(F) so
that it is area-proportional with respect to a weight
function ω. The algorithm is comprised of the following
major steps:

1. Find a path in ~D(F) between v(s) and v(t) and re-
move the respective dual edges from ~G(F) to create
an acyclic graph ~G′(F).

2. Topologically order the vertices of ~G′(F) and asso-
ciate each vertex with a ray; order the rays clock-
wise about an origin x to match the topological
order.

3. For the common region s of F , draw a polygon with
area ω(s) that contains point x.

4. For each vertex v(f) of ~D(F) in breadth-first order
beginning at v(s), draw face f as a polygon with
area ω(f) by expanding one of f ’s directed paths
outward from x along the rays between h(f) and
t(f).

Steps 1 and 2 compute a transformation that defines
the isomorphism between a monotone FISC and a ray-
monotone FISC according to Lemma 1.

Step 3 draws ~G(F)’s common face.
Step 4 draws the remaining faces outwards from the

common face along the rays defined by the topological
sort in Step 2. Because of Lemma 3, as each face f is
encountered, one of its paths will be fixed (i.e., already
defined by the previously drawn polygons) and the other
will be free to expand outward within the sector defined
by the rays associated with h(f) and t(f). The ray-
monotoncity ensures that as each face expands outward,
it will not collide with any faces that have already been
drawn.

Algorithm 1 elaborates on the details and is the ba-
sis for the complexity analysis in the next section. To
make the diagram more compact, Alg. 1 layers the in-
dependent vertices of each step of the topological sort
on a single ray. In addition, Alg. 1 inserts a dummy ray
between each topological ray so that faces whose free
path has only a single edge are able to expand (since
h(f) and h(t) are fixed).

The details of how to compute the polygons in Alg. 1
have been intentionally omitted to emphasize the flexi-
bility of the algorithm to produce a wide-range of draw-
ings of ~G(F). There are many choices for the center
polygon in Line 26; for example, a regular 2k-gon will
yield rays that are evenly distributed. For subsequent
polygons, there is a choice as to how the free path ex-
pands outwards from the fixed path; for example, the
choice could be made to have the free path expand uni-
formly from the fixed path or as tangentially to the
rays as possible (which minimizes jaggedness). In all
of these cases, the relevant formulae are easily derived
using basic geometry and trigonometry. Figure 2 shows
two drawings the FISC from Fig. 1(a) where each re-
gion has equal area; the faces are numbered according
to the order in which they were drawn. Also, in this im-
plementation, two dummy rays are added between each
vertex ray (to provide more smoothness).

4 Analysis

Theorem 4 Algorithm 1 is O(n|V |) for a directed
plane graph ~G(F) = (V, E, F ) where F is a monotone
FISC with n curves.
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Algorithm 1 Let F be a montone FISC. Given ~G(F)
and weight function ω for the faces, this algorithm pro-
duces a radial drawing of ~G(F) where the faces have
areas proportional to ω.

1: {Compute the directed dual of ~G(F).}
2: ~D(F) ← directed plane dual of ~G(F)
3: v(s) ← the unique source vertex of ~D(F)
4: v(t) ← the unique sink vertex of ~D(F)
5: {Compute h(f) and t(f) for each face f of ~G(F).}
6: for all faces f ∈ ~G(F) do
7: h(f), t(f) ← vertex from which the two paths of

f converge,diverge
8: end for
9: {Make ~G(F) acyclic by removing edges between

common face and empty face.}
10: P ← any path from v(s) to v(t)
11: for all edges e ∈ P do
12: remove the respective dual edge e′ from ~G(F)
13: end for
14: {Perform a layered topological sort of ~G(F).}
15: k ← 0
16: L1 ← source vertices of ~G(F)
17: while |Lk+1| > 0 do
18: k ← k + 1
19: for all vertices v ∈ Lk do
20: remove v and its incident edges from ~G(F)
21: end for
22: Lk+1 ← source vertices of ~G(F)
23: end while
24: {Draw the faces outward from the common face.}
25: x ← an arbitrary point in the plane
26: p1, p2, . . . , p2k ← the clockwise points of a 2k-gon

with area ω(s) that contains x
27: Draw polygon p1, p2, . . . , p2k

28: for all bfs-order vertices v(f) ∈ ~D(F)\{v(s), v(t)}
do

29: i, j ← indices where t(f) ∈ Lb(i+1)/2c, h(f) ∈
Lb(j+1)/2c

30: {NOTE: points are indexed, modulo 2k, begin-
ning at p1.}

31: Draw polygon pi, p
′
i+1, . . . , p

′
j−1, pj , pj−1, . . . , pi+1

where these are the clockwise points of a polygon
with area ω(f) that is contained within the sec-
tor defined by x, pi, pj and does not overlap any
existing polygons.

32: pi+1, pi+2, . . . , pj−1 ← p′i+1, p
′
i+2, . . . , p

′
j−1

33: end for
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Figure 2: The result of Alg. 1 on the FISC from Fig.
1(a) using two different polygon growth formulae.

Proof. We assume ~G(F) is represented using the
Winged-Edge data structure [2] which provides O(1)
operations for inserting and removing edges, getting an
arbitrary edge adjacent to a vertex or face, getting the
endpoints of an edge, getting the left and right faces
of an edge, and getting the predecessor and successor
edges about either of an edge’s adjacent faces.

Lines 2–4. The directed dual is created by traversing
the edges of each face of ~G(F) and inserting a respective
dual edge about a new vertex in ~D(F); since each edge
is visited twice, this is an O(|F |+|E|) construction. v(s)
and v(t) can be kept track of during the construction.

Lines 6–8. Similarly, the edges of each face in ~G(F)
are traversed and the vertices where two consecutive
edges converge/diverge is recorded; this is an O(|F | +
|E|) operation.

Line 10. In constructing P , an edge directed out of
the current vertex must be found by searching all the
incident edges. Since D is acyclic, each edge is visited
at most once, so this is an O(|E|) construction.

Lines 11–13. Since P is a directed path from the
common face to the empty face, it visits at most n− 1
edges. Since edge removal is O(1), the complexity of
these steps is O(n).

Lines 15–23. A topological sort is O(|V |+ |E|).
Lines 25–33. We assume that computing a polygon
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involves solving a piecewise function, the size of which
depends on the number of spanned rays. Since F is
ray-monotone, each ray intersects at most n polygons,
and since there are at most 2|V | rays, the number of
equations that must be solved is at most 2|V |n. If each
equation is solved in constant time (which is the case for
the polygon growth methods described), the complexity
of these steps is O(n|V |).

The overall complexity is O(|F |+|E|)+O(n)+O(|V |+
|E|)+O(n|V |). Euler’s Formula linearly relates |V |, |E|,
and |F |, so this simplifies to O(n|V |) for n ≥ 2. ¤

5 Remarks

Another way to draw area-proportional FISCs is to use
existing cartogram algorithms. In this scenario, a pla-
nar graph drawing algorithm (e.g., Tutte or spring-
embedding) would be used to produce a non-area-
proportional drawing of ~G(F) which would subsequently
be used as input to a cartogram algorithm. Cartogram
algorithms are based on an iterative optimization strat-
egy where tradeoffs are made between achieving the re-
quired area-proportionality and maintaining similarity
to the input drawing (e.g., global outline or local angle
preservation). Because of this optimization, the algo-
rithms are compute-intensive (sometimes taking hours,
although recent work has produced faster methods [9]),
and often require numerical methods for solving PDEs.
As such, they are usually unsuitable for realtime explo-
ration (e.g., dynamically adjusting populations).

Since monotone FISCs are a special case of cartogram
input, our algorithm can take advantage of their prop-
erties to implement very fast computation of an area-
proportional drawing. In fact, we have implemented
Alg. 1 as a Java applet that allows the region popula-
tions, the ray distribution, and the polygon growth for-
mulae to be changed in realtime (the screenshots come
from this applet). An avenue for further research is to
use our algorithm’s drawings as input to a cartogram
application, and define optimization criteria based on
desirable aesthetic qualities. It may be the case that
since area-proportionality has already been achieved,
the cartogram algorithm may converge more rapidly.

Finally, our interest in drawing area-proportional
FISCs was motivated by the problem of drawing area-
proportional Euler diagrams. In this scenario, no FISC
is initially provided; instead, the input to the problem
is a set system that specifies which regions of a FISC
are desired (e.g., {{a},{b},{ab},{abc}}). Algorithm 1
can be used to solve this problem by first generating
a monotone Venn diagram FISC (using Anthony Ed-
wards’ construction [7]), and then drawing the FISC so
that unwanted regions are given zero weight. In this
way, an unwanted face’s free path collapses on its fixed
path to make the region disappear (see Fig. 3). Vari-

ous postprocessing can be applied to remove extraneous
overlapping edges as detailed in [5].

Figure 3: The result of deleting region b from Fig. 2(b)
and manipulating the rays and populations.

Readers are encouraged to try our implementation of
the algorithm which is available at the authors’ website:
http://theory.cs.uvic.ca/venn/DrawEuler/.
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