
Nearest Point Query on 184M Points in E3 with a Uniform Grid

W. Randolph Franklin∗†

Abstract

Nearpt3 is an algorithm and implementation to pre-
process more than 108 fixed points in E3 and then per-
form nearest point queries against them. With fixed
and query points drawn from the same distribution,
Nearpt3’s expected preprocessing and query time are
θ(1) per point, with a very small constant factor. The
data structure is a uniform grid in E3, typically with the
same number of grid cells as points. The storage bud-
get, in addition to the space to store the points them-
selves, is 4 bytes per grid cell plus 4 bytes per point.
Nearpt3 has been tested on the UNC complete pow-
erplant, on the largest ply datasets in the Georgia Tech
Large Geometric Models Archive, and the Stanford Dig-
ital Michelangelo Project Archive. The examples with
up to 30,000,000 points can be processed on a laptop
computer, and the others, the largest of which is St
Matthew with 184,088,599 points, on a Xeon.

1 Introduction

Finding the closest fixed point to a query is a common
primitive operation in applications such as surface fit-
ting and intersecting. The prior art includes various
data structures and algorithms for variants of nearest
neighbor searching. The cost of a Voronoi diagram
in E3 is data dependent, and runs from Ω(N log N)
to O(N2) in time and space for preprocessing, with
each query costing θ(log N), [9]. Range trees cost
θ(N log N) time to preprocess, with each query also
costing θ(log N). ANN (Approximate Nearest Neigh-
bors) is a C++ library for approximate and exact near-
est neighbor searching in Ed, allowing a variety of met-
rics, implemented with several different data structures,
based on kd-trees and box-decomposition trees, [2]. An-
other method, which is also data dependent, assumes
that successive queries are close, so that one can effi-
ciently traverse the dataset to the next answer. [10]
summarizes various methods. [5] has a recent imple-

∗Rensselaer Polytechnic Institute, Troy NY 12180, USA,
mail@wrfranklin.org

†This research was supported by NSF grant CCR-0306502, and
by DARPA and NGA under Geo*. We are grateful to be able to
use datasets from the Stanford University Computer Graphics
Laboratory, including the Stanford Digital Michelangelo Project
Archive, Georgia Institute of Technology’s Large Geometric Mod-
els Archive, and the University of North Carolina’s UNC Chapel
Hill Walkthru Project.

mentation with kd-trees that may be even faster than
the current version of Nearpt3.

More general algorithms and data structures tend to
be bigger than Nearpt3, which is optimized specifically
for the L2 metric in E3, although its ideas would gen-
eralize. Nearpt3, which uses a uniform grid, [1, 4],
appears to be the only method that enthusiastically
rejects hierarchical data structures and search tech-
niques. Trees and subdivision searching are much more
robust against the kind of adversarially chosen input
that would force Nearpt3’s query time up to θ(N).
However, those data structures are so much larger that
they cannot process the data sets used in this paper.
Also, their θ(lg N) query time makes them much slower
for many large datasets where Nearpt3’s query time is
θ(1). Also, extreme data unevenness also forces hierar-
chical data structures to have many levels, so that they
are also slower.

This paper is only a brief summary of Nearpt3. For
more details of the implementation and test results, and
the source, see [3].

2 Algorithm

Nearpt3 has three stages, as follows.
Antepreprocess: This step generates part of the

source code that will be included in nearpt.cc when
it is compiled. This is a table of cells sorted by dis-
tance from the origin. (Step 1) Generate the coordinates
(x, y, z) of all grid cells with 0 ≤ x ≤ y ≤ z ≤ R for some
fixed R, say 100. (2) Sort them by

√
x2 + y2 + z2. (3)

Pass down the list in order. For each cell c, find the
last cell, sc, whose closest point to the origin is at least
as close as the farthest point of c. Call sc the stop cell
of c. Since the stop cells are monotonically increasing,
all this requires only one pass down the cell list. The
point is that if a point has been found in c, we have to
continue searching as far as sc to be sure of finding any
closer points. (4) Write the sorted list of cells and stop
cells, in the form of a C++ variable initialization, to a
file that nearpt.cc includes when compiled.

Preprocess: Here the fixed points are built into the
data structure. (1) Compute a uniform grid resolution,
G from the number of fixed points, Nf or get it from the
user. A reasonable value is G = r 3

√
Nf , for 1 ≤ r ≤ 3.

The default is r = 1.6. (2) Allocate a uniform grid with
one word per cell, to store a count of the number of

1



points in each cell. (3) Read the fixed points for the
first time, determine which cell of the uniform grid each
point would fall in, and update the counts. (4) Allocate
a ragged array for the uniform grid, with just enough
space in each cell for the points in that cell. (A ragged
array contains storage for the points plus a dope vec-
tor pointing to the first point of each cell. The total
variable storage is one word per cell, plus the storage
for the points.) (5) Transform, in place, the array of
point counts into the dope vector, so it can occupy the
same space as the array of points count. (6) Read the
fixed points a second time, again computing the cell that
each falls into. This time, store each point in its proper
cell. (The goal is to minimize both the storage used and
the number of storage reallocations. Storage realloca-
tions become especially costly as the program’s virtual
memory approaches the computer’s available real mem-
ory. Our experience is that a program’s performance
drops off dramatically when its virtual memory size is
even slightly over the available real memory, even if its
working set size is still smaller.) (A possible alterna-
tive would be to use a linked list for the points in each
cell. However, the space used for the pointers would be
significant, and the points in each cell would be scat-
tered throughout the memory, which might reduce the
cache performance.) (Another alternative would be to
use a C++ STL vector, which reallocates its storage
as it grows. Our experience finds this to be very sub-
optimal. In addition, our version of STL restricts vec-
tors to a maximum size of 2GB, which is inadequate.)
(A better alternative for grids where almost every cell
is empty would be a hash table. Then, an empty cell
would occupy no space at all, so that larger grids would
be feasible.)

Query: This reports the closest fixed point to q, a
query point. (1) Determine which cell, c, contains q.
(2) If c contains at least one fixed point, then check all
cells in the 5× 5× 5 block centered on c for the closest
fixed point and return it. Since the cells in each row
of the grid are stored contiguously, the fixed points in
one row of 5 cells in the block are checked in one sweep,
so that any empty cells in the row take no time. If the
position of q inside c were taken into account, it would
be unnecessary to check all 124 other cells in the block.
That is a possible future optimization. If the fixed and
query points are selected from the same distribution,
then c almost always contains a fixed point. (3) If c did
not contain at least one fixed point, then do the follow-
ing. Use the precomputed sorted cell list to spiral out
from c until a cell with at least one point is found. (In
the rare case that no cell with any fixed point is found,
then exhaustively check every fixed point.) For each
cell with coordinates (x, y, z) in the sorted cell list, up
to 47 other reflected and rotated cells are derived, such
as (−x, z,−y). If any coordinate is zero, or any two are

equal, there will be fewer other cells. (It would be possi-
ble to do this reflection, rotation, and duplicate deletion
in the prepreprocessing stage. This would cause the sort
cell list to be almost 48 times as large. It might be ex-
pected that this would reduce the query time because
that code would have fewer conditionals, which should
make it more optimizable. However, when we tried this,
the time did not change.) Stop spiralling out at c’s stop
cell. This spiralling process is overly conservative since
it ignores the location of q inside c. That is another
possible future optimization.

The time analysis is as follows. Assuming that the to-
tal number of grid cells is linear in the number of fixed
points, preprocessing time per point is θ(1). Assuming
that the query points are selected from the same dis-
tribution as the fixed points, the neighborhood of any
query point is independent of the size of the dataset,
and so the query time must also be θ(1).

3 Tests, Including Comparison to ANN

We implemented Nearpt3 in C++ under SuSE Linux.
The hardware was either a 2002-vintage IBM T30
Thinkpad laptop computer with 768 MB of memory,
a 1600 MHz Pentium 4 Mobile CPU, or else a 2.4GHz
Xeon with 4GB of memory. The software was Intel’s
icpc 8.1 C++ compiler, with aggressive optimizations
enabled. g++ also works. We report in [3] on every
large dataset that we tested; there are no bad cases
omitted.

Our test data included these datasets: uniXXX, uni-
form i.i.d. sets of 105 to 108 random points, blade,
bone6, dragon, and hand from the Georgia Institute of
Technology’s Large Geometric Models Archive, [11], the
complete powerplant from the University of North Car-
olina’s UNC Chapel Hill Walkthru Project, [12], bunny
from Stanford University Computer Graphics Labora-
tory, [7], and david and stmatthew from the Stanford
Digital Michelangelo Project Archive, [6].

For each test, the statistics described at the top of Ta-
ble 1 were recorded. We also recorded histograms of the
number of points per cell and number of cells checked
per query. Table 1 lists the tests run on a 2.4GHz Xeon
with 4GB of memory, only 3GB of which could be used
by any one process. The laptop could run examples up
to Nf = 30M , using 2–3 times the CPU as the Xeon.

What is the appropriate grid size to use? The answer
is not critical since the time changes only slowly. Figure
1 shows the bone6 dataset run on the Xeon with many
grid sizes. The program default is 1.6 3

√
559636 = 131.

The table shows that the optimal grid size depends on
the number of queries to be performed.

The classic nearest point algorithm in E3 is ANN 0.2
(Approximate Nearest Neighbors) [8]. ANN was com-
piled with the defaults. Running it required no data

2



data Nf G total
time
(sec)

init
time
(sec)

pre-
pro-
cessing
time
(sec)

query
time
(sec)

pre-
pro-
cessing
time
per
fixed
pt
(µsec)

time
per
query
pt
(µsec)

bunny 25947 46 0.08 0. 0.010 0.070 0.385 7.
hand 317323 108 0.50 0.050 0.150 0.300 0.473 30.
dragon 427645 120 0.53 0.060 0.220 0.250 0.514 25.
bone6 559636 131 0.53 0.070 0.250 0.210 0.447 21.
blade 872954 152 0.68 0.110 0.400 0.170 0.458 17.
uni1m 1000000 160 1.46 0.120 0.940 0.400 0.940 40.
powerplant 5413053 280 63.19 0.980 2.810 59.400 0.519 5940.
uni10m 10000000 344 12.83 1.270 11.130 0.430 1.113 43.
david 28158109 486 20.41 3.400 13.100 3.910 0.465 391.
uni30m 30000000 496 41.69 3.880 37.350 0.460 1.245 46.
uni100m 100000000 742 150.50 13.010 137.020 0.470 1.370 47.
stmatthew 184088599 568 160.08 23.750 128.710 7.620 0.699 762.

Table 1: Tests Run on the Dual 2.2 GHz Xeon with 4MB

Figure 1: Varying Grid Size on the Bone6 Dataset on
the Xeon

I/O since the input was randomly generated and the
output not written. Table 2 shows the cost of perform-
ing 10,000 queries against Nf random fixed points, when
run on the laptop. Time is the total CPU time in sec-
onds. Tq is the query time per point in µseconds.

We killed the ANN run for Nf = 107 after 15 minutes
of elapsed time, and didn’t try Nf = 3 · 107. While
all such tests have the obvious limitations, and other
datasets should also be tested, some points are clear. On
this data, the uniform grid does not lose when compared
to a hierarchical data structure. It is probably faster,
and certainly smaller. Therefore it can process much
larger datasets. As Nf → ∞, it appears to get even

Nf Program Time Tq Mem
.1M Nearpt3 0.91 70 3.9M

ANN 1.3 250 9.7M
.3M Nearpt3 1.7 103 6.6M

ANN 3.7 260 20.4M
1M Nearpt3 3.7 118 16M

ANN 15 270 94M
3M Nearpt3 8.9 125 46M

ANN 53 300 277M
10M Nearpt3 28 136 140M

ANN — — —
30M Nearpt3 82 159 328M

ANN — — —

Table 2: Comparison of ANN and Nearpt3

better.

4 Discussion, Extensions, & Summary

1. The absolute times can vary 20% when the same
tests are rerun. The relative times of two different
tests can vary a factor of two depending on the
platform and compiler options. That said:

2. If we ignore bunny, which ran too fast to measure
accurately, the time to preprocess the fixed points
is basically constant. The time did not depend
on the size of the dataset, but on how evenly dis-
tributed the points were. Uniform data sets are

3



good. The powerplant was particularly bad for us
because there are a few outlying points, which force
the vast majority of the points into a small part of
the grid. That demonstrates the limitation of this
method.

3. Even on the uniform random data, the query time
rose slowly with Nf . This is puzzling and needs
study; our current guess is that accessing large
amounts of memory is slightly less efficient.

4. Nearpt3 would fail on query points that were from
a very different distribution from the fixed points,
so that the distance to the nearest point was large,
and most of the cells had to be searched. However,
many competing methods would also have difficul-
ties.

5. Nearpt3’s cost is affected by the grid resolution,
however values within a factor of two of the opti-
mum typically change the time less than a factor
of two.

6. Why do the David and St Matthew datasets have
such large query times? Their points’ local topol-
ogy is two dimensional. Therefore the distribution
of points around each query is very nonuniform.
Most of the cells around each query are empty,
while a few contain many points. We have collected
some statistics on this. For such datasets, a more
sophisticated, probably hierarchical, data structure
would allow faster queries, if it didn’t bloat up the
execution size so much that the data set couldn’t
be processed at all.

7. Nearpt3 could return approximate nearest
matches in much less time than exact nearest
matches, since then the spiral search could stop
sooner.

8. Nearpt3 could be extended to Ed for other d; the
cost of searching would be exponential in d, as for
any search procedure.

9. How might the fixed point storage budget be re-
duced? If the user’s program doesn’t need a sep-
arate copy of the points, then we can store the
points’ coordinates in the grid, instead of storing
the points’ indexes. Also, knowing which cell con-
tains point p tells us the high order bits of p’s co-
ordinates. For a 512 × 512 × 512 grid, that would
save 27 of the 48 bits.

10. How might the storage budget of 4 bytes per cell
be reduced? Using a hash table keyed on the cell
location would reduce that to 0 bytes per empty
cell plus perhaps 16 bytes per occupied call (for the
cell location, pointer to its contents, and number of

points in it, all times 2 for a conservative hash table
load factor). That would be a win for our nonuni-
form examples. Also, that would allow larger grids
to be run on our laptop. However, the execution
time might be slower, tho that’s not clear.

Nearpt3 is still immature, with several obvious pos-
sible optimizations in time and space. Nevertheless, the
general lesson is that simple data structures like the uni-
form grid can be quite efficient in both time and space,
especially in E3.

References

[1] V. Akman, W. R. Franklin, M. Kankanhalli, and
C. Narayanaswami. Geometric computing and the uni-
form grid data technique. Computer Aided Design,
21(7):410–420, 1989.

[2] S. Arya and D. M. Mount. Approximate nearest neigh-
bor queries in fixed dimensions. In Proc. 4th ACM-
SIAM Sympos. Discrete Algorithms, pages 271–280,
1993.

[3] W. R. Franklin. Nearpt3 — nearest point query on
184M points in E3 with a uniform grid. http://

wrfranklin.org/Research/nearpt3/, 2005.

[4] W. R. Franklin and M. Kankanhalli. Parallel object-
space hidden surface removal. In Proceedings of SIG-
GRAPH’90, volume 24, pages 87–94, Aug. 1990.

[5] O. Kreylos. Nearest-neighbor-lookup. http:

//graphics.cs.ucdavis.edu/∼okreylos/ResDev/

NearestNeighbors/, 2005.

[6] M. Levoy. The digital Michelangelo project archive
of 3D models. http://www-graphics.stanford.edu/

data/mich/, 2003.

[7] M. Levoy. The Stanford 3D scanning repos-
itory. http://www-graphics.stanford.edu/data/

3Dscanrep/, 2005.

[8] D. Mount and S. Arya. ANN: library for approximate
nearest neighbor searching version 0.2 (beta release).
http://www.cs.umd.edu/∼mount/ANN/, 1998.

[9] F. P. Preparata and M. I. Shamos. Computational Ge-
ometry: An Introduction. Springer-Verlag, New York,
NY, 1985.

[10] S. S. Skiena. The algorithm design manual — near-
est neighbor search. http://www.cs.sunysb.edu/
∼algorith/files/nearest-neighbor.shtml, 2001.

[11] G. Turk and B. Mullins. Large geometric models
archive. http://www.cc.gatech.edu/projects/large
models/, 2003.

[12] UNC Chapel Hill Walkthru Project. Complete
power plant model. http://www.cs.unc.edu/∼geom/

Powerplant/, 1997.

4


