
Bernstein Based Arithmetic Featuring de Casteljau

Dominique Michelucci Sebti Foufou∗ Löıc Lamarque
David Ménegaux

Lab. Le2i, UMR CNRS 5158, Université de Bourgogne
BP 47870, 21078 Dijon, France

{dmichel, sfoufou, loic.lamarque, david.menegaux}@u-bourgogne.fr

Abstract

Bernstein based interval analysis permits to trace alge-
braic curves and surfaces. In this paper, we propose to
use the classical de Casteljau algorithm to improve the
efficiency of the Bernstein based method. The proposed
tracing method gives significant results with functions
of high degree. These results are illustrated and com-
pared with other interval analysis approaches.

1 Introduction

Interval Analysis (IA), or Interval Arithmetic, has
been used in a variety of domains for reliable com-
putations [6], but its excessive conservatism severely
restricts its benefits, more particularly for CAD-CAM
applications. This paper aims at showing how IA can
be beneficially used and proposes a set of tools to
enable this use. The proposed IA is based on ideas
by Bernstein, Bézier and de Casteljau. We call it the
Bernstein based arithmetic. Examples of algebraic
curves rendering using this arithmetic will be given.

We use the classical subdivision method in section 2 to
trace algebraic curves with several interval arithmetics,
which permits to visually compare the performances of
these arithmetics, and to visually prove the superior-
ity of the Bernstein based arithmetic. The subdivision
method can be combined with continuation methods
(e.g. marching cubes) to get piecewise linear approxi-
mations; these approximations ensure not to forget any
component, which is the main problem with continu-
ation methods. Section 2 makes a short recall about
the main existing methods for the plotting of algebraic
curves and surfaces: we choose to focus on standard IA,
Taubin’s method and affine arithmetic. Then the Bern-
stein based arithmetic is presented in section 3. Section
4 illustrates and compares the performances of different
interval arithmetic methods with the recursive subdivi-

∗Corresponding author. Currently guest researcher at the Na-
tional Institute of Standards and Technology, Gaithersburg, MD
20899, USA. sfoufou@cme.nist.gov

sion method for plotting algebraic curves f(x, y) = 0.
This subdivision method can also be used in 3D, for vox-
elization or boundary evaluation of implicit surfaces or
CSG trees. It can also be used beyond 3D, for instance
to solve systems of polynomial equations.

2 Related works

2.1 The naive arithmetic

The main principle of interval arithmetic consists in re-
placing a given value by an enclosing interval of floating-
point numbers. The interval is defined by X = [a, b] =
{x | a ≤ x ≤ b} as a set of real numbers. Standards
operations can also be defined [8], given two intervals
X and Y: X ¯ Y = {x ¯ y | x ∈ X, y ∈ Y }, with
¯ = +,−,× or ÷.
To be fully conservative, lower bounds are rounded
towards −∞, while upper bounds are rounded towards
+∞. In practice, it is difficult to control, in a portable
way, the rounding mode with high level programming
languages and typically this precaution is not employed.
Usually it has no consequence because the interval
width is huge in front of the ULP (Unit in the Last
Place: the difference between two contiguous floating
point numbers), and because of the consequences of the
wrapping effect [9, 11].

In order to plot the implicit algebraic curve f(x, y) = 0,
the subdivision method evaluates f(x, y) for x ∈ X =
{x−, x+}, y ∈ Y = {y−, y+}, which gives F = [F−, F+].
If F does not contain 0, the curve is not in the box
X × Y , otherwise the box is subdivided in four equal
parts, considering the middles of X and Y . This oper-
ation is recursively applied until a threshold is reached;
then remaining boxes are drawn. Since IA is conserva-
tive, no box is forgotten, i.e. displayed boxes cover the
curve. Conversely, IA can be too much conservative, es-
pecially with naive interval arithmetic: some of drawn
boxes are not cut by the curve. It typically happens
close to singular points and points with high curvature
(Figure 1).

1



Figure 1: F−1(x, y) = 0 in the square [−2, 2] × [−2, 2],
with Fk(x, y) = x3 + 3kxy + y3. On the left, the folium
is covered with a set of boxes using naive IA and the
subdivision method.

2.2 The Taubin’s method

Taubin [15,16] expresses the polynomial f(x, y) as:

f(x, y) = f0 + f1(x, y) + f2(x, y) + . . . fn(x, y)

where fi(x, y) are degree i homogeneous polynomials.
Let Fi be the sum of absolute values of coefficients of
an homogeneous polynomial fi, then:

f([−a, a]) ∈ [f0 −
i=n∑

i=1

Fia
i, f0 +

i=n∑

i=1

Fia
i]

Taubin’s method finds out that for f(x) = x(1 − x),
f([0, 1]) lies in [0, 0.25], which is sharper than the [0, 1]
that results from the naive IA. Taubin uses this homo-
geneous polynomials based expression for the tracing of
2D implicit curves f(x, y) = 0 and the voxelization of
3D implicit surfaces f(x, y, z) = 0.

2.3 The affine arithmetic

The affine arithmetic was proposed by Comba and Stolfi
[1], and later by Figueiredo et al. [2, 4] to decrease the
large overestimation observed in classical IA (e.g. error
explosion problem). Intervals are made even smaller by
taking into account the correlations between variables,
a quantity x is represented by its affine form:

x̂ = x0 + x1ε1 + x2ε2 + . . . + xnεn

where the xi are finite floating-point numbers and the εi

are unknown and independent real numbers in [−1, 1].
x0 is the central value of x̂, other xi are its partial
derivations and the εi are the noise symbols. Given a
quantity x in standard IA within the interval [a, b], the
corresponding affine form of x is x̂ = x0 + x1ε1 where
x0 = (b + a)/2 and x1 = (b − a)/2. The same noise
symbol may appear in two or more quantities, which
indicates their dependencies.

3 The Bernstein method

3.1 Bernstein based intervals

The polynomial curve f(x, y) = 0 inside the square
[0, 1] × [0, 1] is considered as the intersection curve
between the plane z = 0 and the Bézier patch:
x = x, y = y, z = f(x, y). If f has degrees m in x
and n in y, the control points of the Bézier patch are
Pi,j = (i/(m), j/(n), zi,j), i = 0 . . .m, j = 0 . . . n, and
the coefficients zi,j are computed as follows: f(x, y) =
XFY t, X = (1, x, x2, . . . xm)), Y = (1, y, y2, . . . yn)

The Bernstein base for degree n polynomials is

Bt = (Bn
0 (t), Bn

1 (t), . . . Bn
d (t)).

The canonical base is: T = (1, t, t2 . . . tn). The power
base and the Bernstein base are related by:

ti =
n∑

j=i

(
j
i

)
(

n
i

)Bn
j (t)

and

Bn
i (t) =

n∑

j=i

(−1)j−i

(
n
j

)(
j
i

)
tj .

Since f(x, y) = XFY t = BxBBt
y in the Bernstein base,

the matrix B contains the control points of the surface.
The convex hull property of the Bernstein-Bézier base
(Figure 2) guarantees that f(x, y) lies inside the convex
hull of its control points; here the convex hull for
z = f(x, y), x ∈ [0, 1], y ∈ [0, 1] is just the interval
[min(zi,j), max(zi,j)].

If this interval contains 0, the classical de Casteljau
algorithm permits to divide the patch in 2, or in 4
sub - patches - no translation to the canonical base is
needed. Numerically, the matrix B of control points
is divided with de Casteljau algorithm to obtain new
control points. Further recursive applications of the al-
gorithm to each new patch give a better approximation
of the curve.

 x1

x2

f1(x1,x2)=0
x1

z

 x1

x2

Figure 2: Convex hull property of the Bernstein-Bézier
base.

2



3.2 Shrinking intervals with linear programming

Bernstein based intervals can be shrunken with
linear programming, as already remarked by N. Pa-
trikalakis et al. [5, 12, 14]. This optimization uses
properties of the Bernstein base and is not possible
with the naive IA and with Taubin’s method.

A Bézier surface patch lies inside the convex hull of its
control points. The intersection between this convex
hull and the plane z = 0 is a convex polygon, which
encloses the curve arc to trace. Finding the smallest
box [x0, x1] × [y0, y1] enclosing this polygon reduces to
4 linear programming problems. For instance x0 is the
solution of this linear programming problem:

X =
i=m∑

i=0

j=n∑

j=0

λi,jPi,j

1 =
i=m∑

i=0

j=n∑

j=0

λi,j (1)

X = (x, y, z), z = 0, 0 ≤ λi,j

x0 = min x

Actually, the problem is even simpler than that.
For any dimension d, if there is only one equation
z = f(x1, x2 . . . xd) = 0, then finding the smallest
enclosing box [x−1 , x+

1 ] × [x−2 , x+
2 ] × . . . [x−d , x+

d ] reduces
to d very simple 2D convex hull problems: to find
[x−1 , x+

1 ], one should project all control points on the
plane O, x1, z, compute the 2D convex hull of these
2D points, and compute the intersection with the line
z = 0: it is [x−1 , x+

1 ] (see Figure 2 right).

The shrinking method extends to all dimension, and also
to any number of equations. This shrinking method can
also be used to solve systems of polynomial equations.
An important optimization consists in preprocessing the
system F (X) = 0 to be solved as follows: F (X) = 0
has the same roots as F (X)F ′(X)−1 = 0. A single step
of this shrinking method may be sufficient to solve the
system. It ensures quadratic convergence near a root.

4 Comparison

It is well known that the naive IA is optimal when
each variable occurs once in the evaluated expression,
although this case rarely happens. Clearly the Taubin’s
method is much better than the naive one, and the
Bernstein method is better than the Taubin’s one (see
Figures 4, 5 and 6), more details can be found in [3]
pages 418–421. Martin et al. [7] did not reach the same
conclusion, probably because they consider only low
degree or sparse polynomials, and their method may be

Figure 3: Figueiredo et al.’s comparison by between
naive IA (left) and affine arithmetic (right) with curve
f(x, y) = x2 + y2 + xy − (xy)2/2 − 1/4, (x, y) ∈
[−2, 2]× [−2, 2].

different than ours (e.g. they don’t use the de Casteljau
algorithm). In all cases, the Bernstein method gives a
nearly optimal subdivision.

Figueiredo et al. [2,4] results appear to be similar to the
Bernstein based method with low degree polynomials
(see Figure 3). Though, we lack of material to make
any further comparison with other arithmetics.

The Bernstein based method has limitations:
• It is a dense representation. A function

f(x1, x2 . . . xn) with degree di in xi is represented
by a grid of D = (d1 + 1)(d2 + 1) . . . (dn + 1) coeffi-
cients, even when f is sparse in the canonical base.
If n = 10 and di = 2, then N = 310 coefficients are
needed. Maybe a solution is to use the simplicial
Bézier form [3, 13] instead of the tensorial product
form, but we do not yet investigate this track.

• For high degree (20 or more), the condition number
of the conversion matrix between the canonical and
the Bernstein base becomes bad.

• It does not apply for transcendent functions like
cos, exp. It is possible to bound these functions
between two polynomials: this method is used in
computer arithmetic for computing transcendent
functions, another possibility relies on the Poisson’s
base [10].

5 Conclusion

On this paper we show that we could experiment bet-
ter results using Bernstein based arithmetic with the
de Casteljau algorithm than using naive interval arith-
metic, Taubin’s method and the Bernstein method. It
would be very interesting to compare this method with
affine arithmetic since Figueiredo et al. [4] seem to ob-
tain quite similar results. Our interest would be to focus
on high degree polynomials to complete our results.

3



Figure 4: Left: naive IA. Middle: Taubin. Right: de
Casteljau. Plots of Cassini’s oval: C2,2(x, y) = 0 in
[−2, 2] × [−2, 2], where Ca,b(x, y) = ((x + a)2 + y2) ×
((x−)2 + y2)− b4.

Figure 5: Left: naive IA. Middle: Taubin. Right: de
Casteljau. The equation is: f(x, y) = 15/4+8x−16x2+
8y− 112xy + 128x2y− 16y2 + 128xy2− 128x2y2 = 0 on
the square [0, 1] × [0, 1]. The same curve is drawn in
Martin et al. [7]. The image we obtain with the de
Casteljau method is different from the one obtained in
[7]: the latter is polluted with isolated short segments.

References

[1] A. Andrade, D. Comba, J. Luiz, J. Stolfi, and M. Vini-
cius. Affine arithmetic, Dec. 06 1993.

[2] L. H. de Figueiredo and J. Stolfi. Affine arithmetic:
Concepts and applications. Numerical Algorithms,
37(1–4):147–158, Dec. 2004.

[3] G. Farin. Curves and Surfaces for Computer Aided Geo-
metric Design. Academic Press, Boston, 3 edition, 1993.

[4] L. Figueiredo and J. Solfi. Adaptive enumeration of im-
plicit surfaces with affine arithmetic. In Implicit Sur-
faces’95, pages 161–170, Grenoble, France, Apr. 1995.

[5] C.-Y. Hu, N. Patrikalakis, and X. Ye. Robust Inter-
val Solid Modelling. Part 1: Representations. Part 2:
Boundary Evaluation. CAD, 28(10):807–817, 819–830,
1996.

[6] R. Kearfott. Interval computations: Introduction, uses,
and resources. Euromath Bulletin, 1996. Also available
at http://interval.usl.edu/preprints.html.

[7] R. Martin, H. Shou, I. Voiculescu, A. Bowyer, and
G. Wang. Comparison of interval methods for plot-
ting algebraic curves. Comput. Aided Geom. Des.,
19(7):553–587, 2002.

[8] R. Moore. Interval Analysis. Prentice Hall, Englewood
Cliffs, N.J., 1966.

Figure 6: Left: naive IA. Middle: Taubin. Right: de
Casteljau. Random curves with total degree 10, 14, 18.

[9] R. E. Moore. The automatic analysis and control of er-
ror in digital computation based on the use of interval
numbers. In L. B. Rall, editor, Error in Digital Com-
putation, Vol. I, pages 61–130. Wiley, New York, 1965.

[10] G. Morin and R. Goldman. Trimming analytic func-
tions using right sided Poisson subdivision. Computer-
Aided Design, 33(11):813–824, 2001.

[11] A. Neumaier. The wrapping effect, ellipsoid arithmetic,
stability and confidence regions. Computing Supple-
mentum, 9:175–190, 1993.

[12] N. M. Patrikalakis and N. M. Patrikalakis. Shape In-
terrogation for Computer Aided Design and Manufac-
turing. Springer-Verlag New York, Inc., 2002.

[13] J. Peters. Evaluation and approximate evaluation of the
multivariate bernstein-Bézier form on a regularly parti-
tioned simplex. ACM Trans. Math. Softw., 20(4):460–
480, 1994.

[14] E. C. Sherbrooke and N. Patrikalakis. Computation of
the solutions of nonlinear polynomial systems. Com-
puter Aided Geometric Design, 10(5):379–405, 1993.

[15] G. Taubin. Rasterizing algebraic curves and surfaces.
IEEE Computer Graphics and Applications, 14(2):14–
23, mar 1994.

[16] G. Taubin. An Accurate Algorithm for Rasterizing Al-
gebraic Curves. In Second Symp. on Solid Modeling and
Applications, ACM/IEEE, pages 221–230, May 1993.

4


