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Abstract

We consider the problem of cross-stitching a predeter-
mined pattern on a piece of fabric. We show that com-
puting a stitching sequence that minimizes the amount
of thread used when cross-stitching a pattern is NP-
hard. However if the region to be stitched is connected,
then the optimal solution can be obtained in linear
time.

1 Introduction

Cross-stitching is an entertaining pastime where one
“paints” pictures with needle and thread, usually on
specially prepared cross-stitch canvases. See for exam-
ple http://www.cross-stitching.com for many links for
cross-stitching. Mathematically speaking, a cross-stitch
pattern is simply a rectangular grid where some of the
squares in the grid are filled with colors.

To stitch this pattern, we take another grid of holes
(the dual of the first one, actually, though normally each
grid-line consists of more than one thread of the canvas),
and stitch a “cross” with a thread of the appropriate
color for each square of the pattern. The colored thread
is alternatedly above and below the grid of holes, and
only the thread above the grid is normally visible. See
Figure 1 for an illustration.

Figure 1: The pattern and the actual stitching.

In this paper, we consider the problem of stitching a
pattern using as little thread as possible. To our knowl-
edge, this problem has not been studied before. We
consider the following “rules” for cross-stitching:
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• If you end one stitch in one square, then you cannot
start the next stitch in exactly the same square. For
otherwise the thread would just “slip out” and the
stitch would not hold.

• For each stitch, the lower-left-upper-right diag-
onal stitch, the under-diagonal, must come be-
fore the lower-right-upper-left-diagonal, the over-

diagonal.1 This is needed because switching the
order of stitches results in a different reflection of
light, thereby changing significantly the appearance
of color in the resulting stitched picture.

• Arbitrarily long jumps behind the picture are not
allowed. This is because during such jumps, the
thread is either too tight (then the picture doesn’t
lie flat) or too loose (resulting in a tangled mess).
If a long jump is required, then instead one should
cut off the thread and make a knot and restart at
the new place.

Of course, one would stitch the whole design by stitch-
ing one color at a time, and optimize the thread-use by
optimizing it for each color. We hence study here only
the problem of stitching a single color. Thus, we are
given a pattern P , which is a set of stitches, and we
want to find an order and direction of the diagonals of
the stitches of P such that for each stitch the under-
diagonal comes first in the order, the length connection
between two consecutive diagonals is non-zero, and the
total length of all connections (and tied knots) is mini-
mal.

To compute length, we assume that the distance from
one hole to a neighboring hole horizontally or vertically
is 1, and the length of a stitch, being two diagonal dis-
tances, is 2

√
2. Each diagonal of a stitch, other than

the first one, is preceded by a stitch on the back side
of length at least 1. Let k be the length required for a
knot. Presumably this is longer than the distance be-
tween holes that are close together, so we assume that
k >

√
2. Then the minimum length of thread required

for n stitches is 2n(1 +
√

2) + 2k − 1. We say that a
stitching of exactly this length is perfect. Most of our
results are about perfect stitchings.

For many of our arguments, a parity argument will
help. Let the holes of the grid be labelled by pairs of
integers. The parity of a hole is the parity of the sum of

1We don’t really care which direction is considered “diagonal”

and which one “off-diagonal”, as long as it is the same for all

stitches.
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the coordinates. For each stitch, the parity of the holes
used by either diagonal is the same, but the parity of
the holes of different diagonals differ. Let the parity of
a stitch be the same as the parity of the under-diagonal
of the stitch. The stitches are partitioned into even and
odd classes, so that neighbors are in different classes,
like the black and white colors of a chessboard.

Each stitch is incident to four “holes” of the grid;
we sometimes label these holes (when the stitch in
question is clear) using the points of the compass as
hNW , hSW , hNE , hSE . The endpoints of the under-
diagonal of stitch s are hNE and hSW ; we sometimes call
these the entry-points of s since we must start stitching s
at one of these two. The endpoints of the over-diagonal
are hNW and hSE ; we call these the exit-points of s.

2 NP-Hardness

The general problem of finding the shortest possible
stitching of a pattern is NP-hard. We prove this by
showing that a restricted version of the problem is equiv-
alent to a known NP-complete problem.

Theorem 1 The problem of determining whether a set

of stitches can be stitched perfectly is NP-complete.

Our proof of Theorem 1 starts with an apparent digres-
sion.

One variation of the problem is that we are required to
do one full cross at a time, i.e., we must stitch the over-
diagonal immediately after having stitched the under-
diagonal. This still leaves the choice of the entry-point
and the exit-point for each stitch, and in fact, for any
choice of entry-point and exit-point this can be done,
leading to four possible ways of doing one full cross.
See Figure 2 for an illustration. We mark the stitches
with arrows to see from where to where the stitch is
pulled.

NW NE

SW SE

NW NE

SW SE

NW NE

SW SE

NW NE

SW SE

(a) (b) (c) (d)

Figure 2: Four possible ways of completing one cross.

Consider the problem of finding a sequence that can
be stitched perfectly, and in which the under-diagonal
and over-diagonal are stitched immediately one after the
other, for every stitch. When connecting stitches, the
length of the connection must be 1, connecting the over-
diagonal of the previous stitch to the under-diagonal of
the following stitch. Hence the stitches must have the
same parity. Also adjacent stitches in the sequence must
be distance two apart in the Manhattan metric, so that

adjacent stitches are either two steps apart horizontally
or vertically, or diagonally connected.

We claim that any such sequence of stitches can be
stitched perfectly, and one full cross at a time. Start the
first stitch at an arbitrary entry point. For each stitch,
choose the direction of the over-diagonal such that the
exit-point that has unit distance to an entry-point of the
next stitch in the sequence. This exists because the next
point has distance two in Manhattan metric. Continue
until all stitches are done.

On the other hand, for any perfect stitching of stitches
of the same parity, the stitching must actually do one
full cross at a time. Namely, in a perfect stitching we
must alternate between an even diagonal and an odd di-
agonal. Since each under-diagonal must be done before
its over-diagonal, there is only one over-diagonal that is
ready to be done when an under-diagonal is completed,
and that is the over-diagonal of the same stitch. We
have proved:

Lemma 2 A set of stitches that are all of the same

parity can be run perfectly if and only if they admit a

sequential ordering in which neighbors are two apart in

the Manhattan metric. Moreover the stitches must be

done one complete stitch at a time.

Now we prove the theorem, by a reduction from
Hamiltonian Path in a Grid Graph, which is NP-
complete [3]. Let G be an arbitrary grid graph. For
each vertex of G at coordinates (i, j), define a stitch
with SW point at (2i, 2j). Thus all stitches are even.
From the lemma, these stitches can be run perfectly if
and only if there is a they admit a sequential ordering
in which the neighbors are two apart in the Manhattan
metric. Such a sequential ordering corresponds exactly
to a Hamiltonian path in G. This proves Theorem 1.

3 Stitching a contiguous region

In our NP-hardness proof, each stitch was isolated from
all others. In contrast to this, we now prove that
any connected region (by which we mean connected via
edges; connected via a corner-point is not enough) has a
perfect stitching pattern, and we can even impose some
constraints on the location of the first and the last stitch.

Lemma 3 Let P be a connected pattern and s be a

stitch of P . For any entry-point p of s, and any exit-

point q of s, there exists a perfect stitching pattern of P
that starts at p and ends at q.

Proof. The idea can be outlined as follows: perform
a depth-first search of the graph of P starting at s.
Stitch each under-diagonal while exploring a new edge of
the depth-first search tree, and the corresponding over-
diagonal while retreating along this edge.
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To prove the claim more precisely, we use induction
based on the number of stitches of P . If there is only one
stitch s in P , then Figure 2 shows a suitable stitching.
So now let there be more stitches in P . In the following
we assume that p = hSW and q = hSE ; all other cases
are symmetric (with a flip along one of the diagonals).

We stitch s as before, but “insert” a stitching of the
rest of P inbetween. Since we can move from any even
hole on s to any odd hole on s with a stitch of one unit
length, it is not surprising that we can inductively stitch
each part of the rest, beginning and ending with holes
that also belong to s, and then move among the holes
of s with unit length connections to come to the next
area to be stitched. The precise description follows.

Note that P − s may or may not be connected, but
it breaks into at most four connected components. For
d ∈ {E, N, W, S}, let Pd be the connected component
of P − s that is adjacent to s on the side of direction
d. Note that some of these components may be empty
or coincide with each other. We stitch the pattern as
follows (see also Figure 3):

• Stitch the under-diagonal from p = hSW to hNE .

• If PN is non-empty: Stitch from hNE to hNW , and
then stitch PN starting at hNW and ending at hNE.
(Note that hNE and hNW are an entry-point and
exit-point of the stitch adjacent to s in PN , so this
is feasible by induction.)

• Now we are at hNE . If PE is non-empty and dis-
tinct from PN : Stitch from hNE to hSE , and then
pE starting at hSE and ending at hNE.

• Now we are at hNE . If PW is non-empty and dis-
tinct from PN and PE : Stitch from hNE to hNW ,
then stitch PW starting at hNW and ending at hSW .

• We’re now at hNE or at hSW . If PS is non-empty
and distinct from PN , PE and PW , stitch from the
current location to hSE , and then PS starting at
hSE and ending at hSW .

• We’re now at hNE or at hSW . Do a unit stitch to
hNW and then the over-diagonal to hSE = q. �

PS

PN

PEPW

NW

SW

NE

SE
start end

Figure 3: Stitching stitch s and its adjacent compo-
nents, assuming all of them are non-empty and distinct.
Dotted lines are stitches on the back.

We can obtain a perfect stitching of disconnected re-
gions by using the above result on each component, as
long as we can connect the components suitably. In
particular, if we have a pattern of stitches that can be
stitched perfectly, a full cross at a time, then we can
insert stitching connected regions between them, using
Lemma 3. By Lemma 2, we know when such a set exists.

Theorem 4 Assume that a set of stitches can be parti-

tioned into connected regions such that each region has

a “root” stitch, and the set of root stitches admit a se-

quential ordering in which neighbors have distance 2 in

Manhattan metric. Then the set of stitches can be run

perfectly.

The converse of this theorem is not true. The pattern
in Figure 4 can be stitched perfectly, but the leftmost
stitch has distance 3 in Manhattan metric to each of
the other two, so there is no set of possible roots for the
connected regions.

end

start

Figure 4: A counter-example for the converse of Theo-
rem 4.

A second generalization of Lemma 3 concerns the be-
ginning and the end. We can in fact start at an arbitrary
stitch and end at an arbitrary (possibly different) stitch
of the same parity, as follows. Assume that we have a
connected set of stitches. Consider any two stitches of
the same parity, say even parity, which we call s and t.
Since the set of stitches is connected, these stitches are
connected by a path of stitches that alternate in par-
ity. This path can be found using depth first search in
the graph. Let n1, . . . , nk be the even parity stitches on
this path with n1 = s and nk = t. By Lemma 2, these
stitches can be run perfectly. The rest of the stitching
pattern can be split into connected regions, each con-
taining one of ni, and so by Theorem 4 we can stitch
the whole pattern perfectly.

Theorem 5 Any connected set of stitches can be run

perfectly, starting at any stitch, and ending at any stitch

of the same parity. Moreover we can find this stitching

in linear time.

The requirement in Theorem 5 that the first and last
stitch are of the same parity can not be removed: this
must hold for any perfect stitching.

Theorem 6 For any perfect stitching pattern, the par-

ity of the first and last stitch is the same.
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Proof. Say the first stitch is even, so its under-diagonal
is even, so the first diagonal that we stitch is even. The
connection between two consecutively stitched diago-
nals has length 1, which implies that stitched diagonals
alternate in parity. Since there is an even number of di-
agonals to be stitched, this means that the last stitched
diagonal must be odd. But the last stitched diagonal
must be an over-diagonal, so since it is odd, the stitch
containing it is even. �

It is not hard to see that the stitching patterns for any
of the constructive results in this section can be found
in linear time.

4 Conclusion

In this paper, we show that the problem of finding the
minimum amount of thread to cross-stitch a pattern is
NP-hard, but it is easy to solve for connected patterns
since there exists a perfect stitching.

The most interesting open problem is to find heuris-
tics for stitching patterns that are not connected. If
there are just a small number of connected components,
one could solve the problem completely by looking at
all the different ways to connect between the compo-
nents. However we have no reasonable approximation
algorithm, with performance ratio less than 2, say, if
there are a large number of connected components. One
should be able to do much better than this, particu-
larly because the problem is in some sense geometric.
One would think that one could find a reduction to,
say, the Euclidean Travelling Salesman problem, but
the apparently natural reductions are not symmetric.
Can we instead use the underlying ideas of heuristics
for the Euclidean Travelling Salesman problem, such
as the Christofides heuristic [2] or the ε-approximation
schemes [1, 4], and develop good approximation algo-
rithms for the cross-stitching problem directly?

We do have one simple heuristic with a guaranteed
performance bound, but which would cause laughter
from a person who does cross-stitching. We could do
each stitch independently, and tie a knot after each
stitch. This gives an asymptotic performance ratio of
(2(k +

√
2) + 1)/2(1 +

√
2). In practice slightly better,

but still laughable, would be to do a perfect stitching
pattern for each connected region, and then tie a knot
before moving on to the next.

If we drop the requirement that the under-diagonal
must be stitched before the over-diagonal, then finding a
stitching pattern with the least thread is easily reduced
to the travelling salesman problem. Unfortunately, the
triangle-inequality does not hold, so the standard ap-
proximation algorithms for TSP does not apply. Stitch-
ing one full cross at a time can also be phrased as a TSP
problem, but again the triangle inequality doesn’t hold.

Various other interesting problems come from further
rules and variants often applied to cross-stitching:

• In our perfect stitching results (Section 3), we as-
sumed that any unit stitch behind the pattern is
allowed to be done. This is justified when the unit
stitch is on the boundary of a cross (which in par-
ticular is the case for Lemma 3), but not always
true otherwise.

Specifically, to create a nice cross-stitch picture, no
dark thread should run behind a light stitch, and
no thread at all should run behind places where
there is no stitch. This is needed because darker
threads behind shine through in the final picture,
giving undesired color effects.

Thus, Lemma 2, and hence Theorem 4, only hold if
all required unit distance connections are actually
allowed to be done, because another (darker) color
covers this area. What can be said about perfect
stitching of non-connected patterns where this is
not the case?

• Many cross-stitch patterns are more complicated
than “each cross in one color”. Some allow half-
stitches, i.e., stitches that only go to the centre of
the cross. Others require two colors for a cross,
which means that one diagonal is stitched in one
color and the other one in another color (it is not
necessarily said which diagonal should be which.)

A number of interesting variants arise from these
modifications. In particular, consider the case that
we only want to do the under-diagonal for each
stitch. When do we have a perfect stitching pat-
tern? This does not even exist for all connected
patterns (though it does exist for patterns that have
a Hamiltonian path.) Is this NP-hard to test?
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